scholarly journals Seismic Analysis Method for Underground Structure in Loess Area Based on the Modified Displacement-Based Method

2021 ◽  
Vol 11 (23) ◽  
pp. 11245
Author(s):  
Ruijie Zhang ◽  
Dan Ye ◽  
Jianting Zhou ◽  
Dengzhou Quan

At present, the seismic design research of underground structures in loess areas is lagging behind compared with practical engineering requirements. The selection of seismic calculation methods and parameters does not consider the influences of the special geological conditions in various regions, so their usefulness is limited. Based on the above problems, a modified displacement-based method (DBM) was proposed and its application was compared with the most commonly used methods of analysis (force-based design method, displacement-based design method, detailed equivalent static analysis numerical method, and the full dynamic time-history method). The results were also validated by considering data from shaking table tests conducted on a case study involving the underground Feitian Road subway station in Xi’an. The results show that compared with DBM, the average accuracy of the modified DBM technique is improved by 41.65%. The modified DBM offers good accuracy, simplicity in its model, a rapid analysis time, and easy convergence.

Author(s):  
Alexander M. Belostotsky ◽  
Pavel A. Akimov ◽  
Dmitry D. Dmitriev

As is known, underground facilities are an integral part of the infrastructure of modern society. These objects have some specific characteristics such as complex construction, high cost, long life cycle, etc. Once it is destroyed, the direct and indirect losses are more seriousness than the general structure in the ground. Under-ground facilities built in areas subject to earthquake activity must withstand both seismic and static loading. Therefore, it is very important to carry on the seismic design of the underground structure in a safe and economi-cal way. The distinctive paper presents a summary of the current state of seismic analysis for underground struc-tures. Classification and brief overview of methods of seismic analysis of underground structures (force-based methods, displacement-based methods, numerical methods of seismic analysis of coupled system “soil – under-ground structure”) are presented, problems of soil-structure interaction are under consideration as well. So-called static finite element method with substructure technique for seismic analysis of underground structures is de-scribed.


2003 ◽  
Vol 1845 (1) ◽  
pp. 213-225
Author(s):  
Robert A. Dameron ◽  
Serafim G. Arzoumanidis ◽  
Steven W. Bennett ◽  
Ayaz Malik

The Brooklyn–Queens Expressway (BQE), Interstate 278 between Atlantic Avenue and Washington Street in Kings County, is an approximately 1,500-m-long multiple-level highway reinforced concrete structure that was built in 1948. It is an important transportation link in the New York City metropolitan area and serves a daily traffic volume of 122,000 vehicles. The longest portion of the BQE consists of elevated one-, two-, and three-level cantilever structures. They are built into the hillside of Brooklyn Heights in successive levels, set back to provide light and air to three lanes of traffic in each direction. They have a unique configuration consisting of rigid frames supporting the roadways with long cantilevers, serving also as retaining walls supporting the hillside beneath adjacent brick buildings. The reinforced concrete portions of the BQE were modeled with finite elements that explicitly represented the concrete and reinforcement and used nonlinear material models. The displacement performance was determined in cyclic pushover analysis that predicted concrete cracking and reinforcing bar yielding. This performance was compared with recently developed displacement performance criteria to establish displacement capacities. The displacement demands were determined by time history analyses using nonlinear models. The methods and criteria that were used for evaluation of the BQE structures are described, and conclusions that may be applicable to future seismic evaluations using the displacement-based approach are provided. Other project challenges are also discussed, including the seismic effects of adjacent buildings and subway tunnels.


2017 ◽  
Vol 11 (05) ◽  
pp. 1750020 ◽  
Author(s):  
Ma Xianfeng ◽  
Wang Guobo ◽  
Wu Jun ◽  
Ji Qianqian

Shaking table tests were conducted on typical models of subway structures subjected to several seismic shaking time histories to study seismic response of subway structures in soft ground as well as to provide data for validation of seismic design methods for underground structure. Three types of tests were presented herein, namely green field test, subway station test, and test for joint structure between subway station and tunnel. The similitude and modeling aspects of the 1g shaking table test are discussed. The seismic response of Shanghai clay in different depths was examined under different input waves to understand the acceleration amplification feature in both green field and in the presence of underground structure. Damage situation was checked on internal sections of both subway station and tunnels by halving the model structure. Structure deformation was investigated in terms of element strain under different earthquake loadings. The findings from this study provides useful pointers for future shaking table tests on underground structures/facilities, and the seismic response characteristic of underground structure derived from the shaking table test could be helpful for validating seismic design method for subway station.


2011 ◽  
Vol 194-196 ◽  
pp. 2018-2023
Author(s):  
Jin Bian ◽  
Lian Jin Tao ◽  
Wen Pei Wang ◽  
Bo Zhang

Underground subway RC structures suffered significant damage during many earthquakes, so it is important to study the seismic behavior on RC subway structure. The shaking table model test is made of the Beijing typical subway station structure. In this article, the test is introduced briefly; then, the acceleration history curves are analyzed. By the test, it is found that the interaction exits between structure and soil. Under the low intensity earthquake, the underground structure will exert a very small influence on soil and vibrates with soil; under the high intensity earthquake, the soil will exert a large thrust on the underground structure and the relative displacement exists between them. Moreover, At the bottom of the structure side wall, the peak acceleration is larger than it in soil around the place, and at the top and middle of the structure side wall, the peak accelerations are smaller than them in soil around the place; with the depth increase, decrease the peak value, the excellence frequency and its amplitude of the acceleration time history.


2019 ◽  
Vol 13 (02) ◽  
pp. 1950009 ◽  
Author(s):  
Cuizhou Yue ◽  
Yonglai Zheng ◽  
Shuxin Deng

Central columns have long been demonstrated to play a vital role in withstanding not only static gravity loads but also seismic loads like earthquakes. A series of modeling tests are implemented on shaking table instrument to reflect the mechanism of soil — structure interaction and examine the validity of method of uplifting underground structural seismic resistance through strengthening central columns. An innovative method of enhancing central columns by adhering carbon fiber cloth onto column’s peripheral surface is introduced into a series of shaking table modeling tests, in which two two-layer underground model structures are constructed for comparison, one without any column remedy acts as a benchmark for reference and the other is amended with carbon fiber cloth adhered on column surface. Test results show that soft round model box adopted in tests serves well in simulating earthquake actions with negligible boundary effects on wave transfer; soil dynamic characteristics and the relative stiffness of structure to surrounding soil will interactively limit mutual motion and deformation. Racking deformation assumption may be not applicable for overall two-layer underground structure deformation analysis, but may be suitable for inter-layer displacement calculation for single layer in multi-layer rectangular underground structures. The adopted column enhancement measure could not only greatly increase the stiffness ratio of model structure to soil, reducing structure deformation, but also improve the integrity of underground structure by narrowing down the deformation difference between two structural layers, certifying that such a measure could be validly used in improving the seismic resistance capacity for already built underground structures without enough aseismic consideration when designed.


2013 ◽  
Vol 353-356 ◽  
pp. 1461-1465
Author(s):  
Wei Feng Sun ◽  
Li Ping Jing ◽  
Yan Zou ◽  
Ning Bo Yang ◽  
Yong Qiang Li

A three-story underground structure shaking table test had been carried on to study the earthquake damage mechanism of underground structure in layered foundation. The test model was similar to typical subway station according to a certain similarity ratio, and the soils were disturbed sandy soil and silty clay dug from the site of Harbin subway. Shaking table tests to this typical model in silty clay and alternating layers of clay and sand were performed to reveal the effect of different layered soils. Results show that the sandy soil layer can reduce the damage of the soil and underground structure, the damage of underground structure is mainly controlled by displacement of the surrounding soil, and the response of shallow buried underground structure is larger than deep buried.


2015 ◽  
Vol 13 (2) ◽  
pp. 155-166
Author(s):  
NP.R. Singh ◽  
Hemant Vinayak

Seismic analysis of bridge pier supported on pile foundation requires consideration of soil-pile-structure (kinematic and inertial) interactions. This paper presents the design forces generated for bridge piers with varying height and constant diameter for medium and soft soils in earthquake probability zones considering contribution of soil-pile-structure interactions by developed analytical approaches. The results have shown that the difference in base shear demand between force based and displacement based approach and that between capacity spectrum and displacement based method in general decreases with the increase in slenderness ratio of the pier. The base shear demand by non-linear time history analysis has been found to be much higher compared to that by other methods. The relationship between height and pier cross-section has been developed for different soils and seismic zones such that the base shear demands by force based and displacement based method are of the same order. The overall value of the slenderness ratio works out to be such that failure of the pile shall be as a short column for both medium and soft soil.


2009 ◽  
Vol 4 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Kazuhiko Kasai ◽  
◽  
Masayoshi Nakai ◽  
Yutaka Nakamura ◽  
Hidekatsu Asai ◽  
...  

This paper discusses the following three key issues on passive control using dampers for seismic protection of buildings:1 Major experimental research on passive control of buildings: Tests using the world’s largest shaking table “E-Defense” from March to April 2009 evaluated a full-scale 5-story steel building with and without dampers. 2 Codes and specifications: The Japanese building code requires that the nonlinear time history analysis be performed for buildings with dampers or that energy-based analysis be conducted when steel dampers are used. Unlike code rules leading to iterative design, the specifications of the Japan Society of Seismic Isolation (JSSI) give direct design method (DDM) for target performance set by designers. 3 Damage-free structure and its design: Backed by government support, a large team of researchers and designers has developed a structure damage-free against a catastrophic earthquake, using dampers and super-high-strength steel frames. The structure and its design rule using DDM are being studied for inclusion in projected code.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Feng Shuang Guo ◽  
Yun Sheng Wang ◽  
Chang Bao Wang ◽  
LiJuan Wang

To investigate the seismic performance of underground structures under the action of the structure-soil interface, in this study, experiments were performed using plexiglass structures (two pieces) and a concrete structure (one piece) as the research objects. The surface of one plexiglass structure was prepainted with a layer of cement mortar as the contact surface between the structure and soil, and the other plexiglass structure was not treated and used for comparison. A rigid model box measuring 2.25 m × 2.25 m × 1.5 m was placed on a 3 m × 3 m shaking table, and the box was filled with the configured model soil and the underground structure prepared in advance. Input transverse uniform excitation was imparted to the whole system. A shaking table model test was performed on the underground structures to analyse the acceleration response, stress strain, and earth pressure changes in the underground structure, and the influence of the contact surface on the seismic dynamics of the underground structure was evaluated. The test results showed that under uniform excitation, the dynamic characteristics of the underground structures were greatly affected by the intensity and depth of the seismic waves. (1) When the soil-structure contact was considered, the stress and strain of the structures increased significantly, and the stress-strain value was significantly greater than the stress-strain value of the soil-structure interface in a fully bonded state. (2) There were inconsistencies between the acceleration peak curve of the plexiglass structure considering the contact effect and the acceleration peak curve of the plexiglass structure without considering the contact effect. The difference between the two lies mainly in the corresponding maximum peak acceleration and the Fourier spectrum amplitude. With respect to the value and frequency composition, regardless of whether the input acceleration intensity was 0.2 g or 0.5 g, the peak acceleration of the organic structure was greater when the contact surface effect was considered than without the contact surface effect. Therefore, the structure-soil interface needs to be considered in actual engineering. The presence of the contact surface improves the safety of the structure and is helpful for seismic design. The results of this study provide a basis for further research on the influence of soil-pipe contact on the seismic response of underground structures.


2018 ◽  
Vol 931 ◽  
pp. 91-99
Author(s):  
Alexander M. Belostotskiy ◽  
Pavel A. Akimov ◽  
Dmitry S. Dmitriev

This paper is devoted to actual problems of seismic analysis of underground structures. Brief classification and overview of corresponding methods of analysis (force-based methods, displacement-based methods, numerical methods of seismic analysis of coupled system “soil – underground structure” and approaches to problems of soil-structure interaction) is presented. Special static finite element method with substructure technique for seismic analysis of underground structures is described. Dynamic soil-structure interaction system can be decomposed into three sub-structures: structure, near-field and far-field soil. The first stage of static finite element method is solving the free field shear stress, acceleration, velocity and displacement, when the moment that the relative displacement of the soil that the underground structure located in reaches the maximum. The second stage is computing of internal forces and parameters of boundary conditions. The third stage is construction of the static finite element model and imposing the loads and constrains computed at the second stage and then making a static analysis.


Sign in / Sign up

Export Citation Format

Share Document