scholarly journals An Electrolarynx Control Method Using Myoelectric Signals from the Neck

2021 ◽  
Vol 33 (4) ◽  
pp. 804-813
Author(s):  
Katsutoshi Oe ◽  

Patients who have lost vocal cord function due to laryngeal cancer or laryngeal injury are incapable of speech because it is impossible to generate the laryngeal tone from which the voice originates. For such patients, various speech production substitutes have been devised and put into practical use. The electrolarynx is one of these speech production substitutes and it can be used with relative ease. However, the sound is sometimes difficult to hear and its quality is monotonous. Therefore, focusing on the control method to improve the articulation of the electrolarynx, we have proposed an electrolarynx controlled by myoelectric signals of the neck. The sternohyoid muscle, which is located in the superficial layer of the neck, was the source of the myoelectric signals. This muscle is active during speech, and its activity increases mainly at the time of speech in a low voice. We succeeded in detecting the surface myoelectric signals of the sternohyoid muscle and performing on/off control of the electrolarynx by signal processing. This report includes the derivation of a control function for converting into a control signal of the fundamental frequency of the electrolarynx from the relationship between the myoelectric signals and the fundamental frequency of the voice. This report also includes an evaluation of the controllability of the electrolarynx by comparing the obtained control signal with the user’s intention. Regarding the control of the fundamental frequency, we have proposed a method of control in three stages – high, medium, and low – and a method of control in two stages – high and low – and compared their performances. The results of the three-stage control indicated that the use of the logarithm as a control function for converting the myoelectric signals into the fundamental frequency of the electrolarynx succeeded in the control at an accuracy of 90% or more by changing the pitch of the generated sound depending on the subjects. It was also indicated that the error rate was as low as less than 20%, while maintaining a constant sound. This makes it clear that the use of the logarithm as a control function gives the highest controllability. The two-stage control exhibits a very high control success rate exceeding 90%, regardless of the type of control function; in particular, the control function using the logarithm exhibits a control success rate exceeding 95%. These results indicate that the electrolarynx control function obtained using the logarithmic function has excellent controllability.

1982 ◽  
Vol 27 (9) ◽  
pp. 690-692 ◽  
Author(s):  
Janet Pierrehumbert ◽  
Mark Liberman

2008 ◽  
Vol 22 (24) ◽  
pp. 4153-4161 ◽  
Author(s):  
YU QIAN ◽  
YU XUE ◽  
GUANG-ZHI CHEN

A unidirectional coupling method to successfully suppress spiral waves in excitable media is proposed. It is shown that this control method has high control efficiency and is robust. It adapts to control of spiral waves for catalytic CO oxidation on platinum as well as for the FHN model. The power law n ~ c-k of control time steps n versus the coupling strength c for different models has been obtained.


2013 ◽  
Vol 738 ◽  
pp. 272-275
Author(s):  
Dun Chen Lan

In the field of mechanical automation, intelligent industrial robot technology is an important branch in the research field of robot; it is always the hot spots of the world robot research, and it being used to get the application in the industry today. Robot experiment platform of PLC and motor control technology, it based on the control method used by the robot control system improvements to make it more perfect run more precise, reasonable. In the same time, the man-machine interface state run monitoring, to ensure the normal operation of the system. Improved control method of the improvement of the work efficiency, reduce the work of the workers a duplication degree have a significant effect, and the system control at the scene, especially PLC control has excellent control function and good cost performance .


CHIPSET ◽  
2020 ◽  
Vol 1 (01) ◽  
pp. 1-4
Author(s):  
Mohammad Hafiz Hersyah ◽  
Ririn Putri Anedya

This research aims to establish a reservation system or reservation schedule for health services in the health facility class one. This system uses qr code technology to identify health service schedule orders made by users. This system consists of a laptop webcam that functions as a device for reading data in QR codes, Arduino Uno microcontroller as a data processor for reading QR code results, an MP3 player module as a device for storing sound output, speakers functioning as sound output devices for reading QR codes and Android application as a system interface for ordering health service schedules in health facility class one and accessing databases. Ordering a health service schedule starts with the selection of the service schedule by the user on the android application, then the user will get a qr code as proof of the order made to identify the sequence that will later be read by the webcam laptop and the results processed by Arduino followed by the voice output from the speaker. This study shows the success rate of the system in making online schedule bookings by 100%. In the process of identifying the QR code using a webcam with bright lighting conditions it has a 100% success rate and with a reading range of 11-20 cm a 90% success rate is obtained. In testing, the sound output from the speakers obtained a success rate of 100%.


2016 ◽  
Vol 27 (10) ◽  
pp. 1650111
Author(s):  
Yi Liu ◽  
Rong-Jun Cheng ◽  
Yan-Qiang Ma ◽  
Hong-Xia Ge

Based on multi-phase car-following model proposed by Nagatani, the control theory method is used to analyze the stability of the model. The optimal velocity function is improved to have more turning points. The original optimal velocity with one turning point shows two-phase traffic, while the improved model with [Formula: see text] turning points exhibits [Formula: see text] phase traffic. Control signal is added into the model. Numerical simulation is conducted to show the results for the stability of the model with and without control signal.


2013 ◽  
Vol 416-417 ◽  
pp. 890-894
Author(s):  
Xiao Hui Guo

Tobacco Warehousing is chiefly applied to preserve the tobacco that is separated into leaf and stem so that the tobacco moisture is controlled at the range of technology demand.The present control method of tobacco save is that the references of every PID control link are set up and adjusted by human experience. So, the control effect varies with the individual and the output tobacco moisture can't maintain stable.The fuzzy-PID temperature system is based on CC2430 single chip. It includes the power source, the manipulative algorithm, the temperature examination , the correspondence of up PC and the output-control of the switch value and so on. Computer takes the parameter deviation and the deviation change as input, and the PID controllers parameters of ΔKp, Δki, ΔKd as output. The sub program realized the corresponding events by completing zone bit and zone bit judgment. The main program realized temperature control function by calling the wireless micro-controller sends a signal to the charged unit


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Bayram Akdemir

Linear control is widely used for any fluid or air flows in many automobile, robotics, and hydraulics applications. According to signal level, valve can be controlled linearly. But, for many valves, hydraulics or air is not easy to control proportionally because of flows dynamics. As a conventional solution, electronic driver has up and down limits. After manually settling up and down limits, control unit has proportional blind behavior between two points. This study offers a novel valve control method merging pulse width and amplitude modulation in the same structure. Proposed method uses low voltage AC signal to understand the valve position and uses pulse width modulation for power transfer to coil. DC level leads to controlling the valve and AC signal gives feedback related to core moving. Any amplitude demodulator gives core position as voltage. Control unit makes reconstruction using start and end points to obtain linearization at zero control signal and maximum control signal matched to minimum demodulated amplitude level. Proposed method includes self-learning abilities to keep controlling in hard environmental conditions such as dust, temperature, and corrosion. Thus, self-learning helps to provide precision control for hard conditions.


Author(s):  
Johan Sundberg

The function of the voice organ is basically the same in classical singing as in speech. However, loud orchestral accompaniment has necessitated the use of the voice in an economical way. As a consequence, the vowel sounds tend to deviate considerably from those in speech. Male voices cluster formant three, four, and five, so that a marked peak is produced in spectrum envelope near 3,000 Hz. This helps them to get heard through a loud orchestral accompaniment. They seem to achieve this effect by widening the lower pharynx, which makes the vowels more centralized than in speech. Singers often sing at fundamental frequencies higher than the normal first formant frequency of the vowel in the lyrics. In such cases they raise the first formant frequency so that it gets somewhat higher than the fundamental frequency. This is achieved by reducing the degree of vocal tract constriction or by widening the lip and jaw openings, constricting the vocal tract in the pharyngeal end and widening it in the mouth. These deviations from speech cause difficulties in vowel identification, particularly at high fundamental frequencies. Actually, vowel identification is almost impossible above 700 Hz (pitch F5). Another great difference between vocal sound produced in speech and the classical singing tradition concerns female voices, which need to reduce the timbral differences between voice registers. Females normally speak in modal or chest register, and the transition to falsetto tends to happen somewhere above 350 Hz. The great timbral differences between these registers are avoided by establishing control over the register function, that is, over the vocal fold vibration characteristics, so that seamless transitions are achieved. In many other respects, there are more or less close similarities between speech and singing. Thus, marking phrase structure, emphasizing important events, and emotional coloring are common principles, which may make vocal artists deviate considerably from the score’s nominal description of fundamental frequency and syllable duration.


2018 ◽  
Vol 8 (5) ◽  
pp. 27
Author(s):  
Abdul Abbasi ◽  
Mansoor Channa ◽  
Masood Memon ◽  
Stephen John ◽  
Irtaza Ahmed ◽  
...  

The purpose of this investigation was to document acoustic characteristics of Pakistani English (PaKE) vowel sounds. The experiment was designed to examine the properties of ten vowels produced by Pakistani ESL learners. The analysis is based on the voice samples of recorded 50 CVC words. Total 5000 (10  10  50=5000) voiced samples were analyzed. The data consisted of 50 words of ten English vowel sounds [i: ɪ e ɔ: æ ə ɑ: u: ɒ ʊ]. Ten ESL speakers recorded their voice samples on Praat speech processing tool installed on laptop. Three parameters were considered i.e., fundamental frequency (F0), vowel quality (F1-F2) and duration. Formant patterns were judged manually by visual inspection on Praat Speech Processing Tool. Analysis of formant frequency shows numerous differences between male and female of F1 and F2, fundamental frequency and duration of English vowels. The voice samples provide evidence for higher and lower frequency of vowel sounds. Additionally, the data analysis illustrates that there were statistical differences in the values of short and long vowels coupled with vowel space plot showing explicit differences in locating the production of vowels of male & female vowel space acoustic realizations.


Sign in / Sign up

Export Citation Format

Share Document