scholarly journals Novel Intelligent and Sensorless Proportional Valve Control with Self-Learning Ability

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Bayram Akdemir

Linear control is widely used for any fluid or air flows in many automobile, robotics, and hydraulics applications. According to signal level, valve can be controlled linearly. But, for many valves, hydraulics or air is not easy to control proportionally because of flows dynamics. As a conventional solution, electronic driver has up and down limits. After manually settling up and down limits, control unit has proportional blind behavior between two points. This study offers a novel valve control method merging pulse width and amplitude modulation in the same structure. Proposed method uses low voltage AC signal to understand the valve position and uses pulse width modulation for power transfer to coil. DC level leads to controlling the valve and AC signal gives feedback related to core moving. Any amplitude demodulator gives core position as voltage. Control unit makes reconstruction using start and end points to obtain linearization at zero control signal and maximum control signal matched to minimum demodulated amplitude level. Proposed method includes self-learning abilities to keep controlling in hard environmental conditions such as dust, temperature, and corrosion. Thus, self-learning helps to provide precision control for hard conditions.

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 75
Author(s):  
Manyuan Ye ◽  
Qiwen Wei ◽  
Wei Ren ◽  
Guizhi Song

The three unit nine-level inverter can output more voltage levels with fewer h-bridge units, while having better output waveform quality. However, in the conventional hybrid frequency modulation strategy, only one low-voltage unit adopts pulse width modulation (PWM), which causes the problem of switching loss and uneven heat distribution between the two low-voltage units. At the same time, the output power of the conventional modulation strategy is unbalanced. Aiming to resolve the above problems, a modified hybrid modulation strategy and a power balance control method under the strategy is proposed in this paper. The modulation strategy achieves output power balance between the three units and an even distribution of switching losses between the two low voltage units while maintaining the same output power quality. Simulation and experimental results verify the feasibility of the modulation strategy.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2754
Author(s):  
Mengmeng Xiao ◽  
Shaorong Wang ◽  
Zia Ullah

Three-phase imbalance is a long-term issue existing in low-voltage distribution networks (LVDNs), which consequently has an inverse impact on the safe and optimal operation of LVDNs. Recently, the increasing integration of single-phase distributed generations (DGs) and flexible loads has increased the probability of imbalance occurrence in LVDNs. To overcome the above challenges, this paper proposes a novel methodology based on the concept of "Active Asymmetry Energy-Absorbing (AAEA)" utilizing loads with a back-to-back converter, denoted as “AAEA Unit” in this paper. AAEA Units are deployed and coordinated to actively absorb asymmetry power among three phases for imbalance mitigation in LVDNs based on the high-precision, high-accuracy, and real-time distribution-level phasor measurement unit (D-PMU) data acquisition system and the 5th generation mobile networks (5G) communication channels. Furthermore, the control scheme of the proposed method includes three control units. Specifically, the positive-sequence control unit is designed to maintain the voltage of the DC-capacitor of the back-to-back converter. Likewise, the negative-sequence and zero-sequence control units are expected to mitigate the imbalanced current components. A simple imbalanced LVDN is modeled and tested in Simulink/Matlab (MathWorks, US). The obtained results demonstrate the effectiveness of the proposed methodology.


Author(s):  
Ezz Eldin Ibrahim ◽  
Tarek Elnady ◽  
Mohamed Saffaa Hassan ◽  
Ibrahim Saleh

The presented work was directed to develop the dynamic performance of an electro-hydraulic proportional system (EHPS). A mathematical model of the EHPS is presented using electro- hydraulic proportional valve (EHPV) by Matlab-Simulink, which facilitates the simulation of the hydraulic behavior inside the main control unit. Experimental work is done and the closed loop system is designed using the linear variable displacement transducer sensor (LVDT). The controller of the system is an Arduino uno, which is considered as a processor of the system. The model is validated by the experimental system. The study also presents a real time tracking control method, based on pulse width modulation, by controlling the speed of the actuator to achieve the position tracking with minimum error and low transient time, by applying the constant input signal 50mm the transient time was 0.9 seconds and the error 1.8%.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 263
Author(s):  
Manyuan Ye ◽  
Wei Ren ◽  
Qiwen Wei ◽  
Guizhi Song ◽  
Zhilin Miao

Asymmetric Cascaded H-bridge (ACHB) level inverters can output more voltage waveforms with fewer cascaded units while ensuring the quality of output voltage waveforms, so they have attracted more and more attention. Taking the topology of Type-III asymmetric CHB multilevel inverters as the research object, a Modified Hybrid Frequency Pulse Width Modulation (MHF-PWM) strategy is proposed in this paper. This modulation strategy overcomes the local overshoot of low-voltage unit in the presence of traditional Hybrid Frequency Pulse Width Modulation (HF-PWM), thus completely eliminating the low frequency harmonics in the output voltage waveform of Type-III ACHB nine-level inverters, and the Total Harmonic Distortion (THD) of output line voltage of the modulation strategy is lower than that of PS-PWM strategy in the whole modulation degree, which effectively improves the quality waveform of the output line voltage. At the same time, the strategy can also improve the problems of current backflow and energy feedback caused by the high-voltage unit pouring current to the low-voltage unit, thereby reducing the imbalance of the output power of the high-voltage and low-voltage units. Finally, the Matlab/Simulink simulation model and experimental platform are established to verify the validity and practicality of the modulation strategy.


2013 ◽  
Vol 394 ◽  
pp. 393-397
Author(s):  
Jing Ma ◽  
Wen Hui Zhang ◽  
Zhi Hua Zhu

Neural network self-learning optimization PID control algorithm is put forward for free-floating space robot with flexible manipulators. Firstly, dynamics model of space flexible robot is established, then, neural network with good learning ability is used to approach non-linear system. Optimization algorithm of network weights is designed to speed up the learning speed and the adjustment velocity. Error function is offered by PID controller. The neural network self-learning PID control method can improve the control precision.


2013 ◽  
Vol 380-384 ◽  
pp. 309-312
Author(s):  
Xue Wen Wang ◽  
Zhou Hu Deng ◽  
Xiao Yun ◽  
Long Zhang ◽  
Yuan Zhang

The mathematical vector model of a permanent magnet synchronous motor (PMSM) has first been discussed in this paper, and a servo control system based on Space Vector Pulse Width Modulation (SVPWM) has been designed, in which a enhanced Microprogrammed Control Unit (EMCU) is combined with drive chips and the relevant control software to achieve the precise control of PMSM. In order to control the position, speed and current of the PMSM, six SVPWM signals are generated with the motor vector control method, and the vector control strategy with three closed loops is projected. According to the control principle, the circuits of the hardware modules are designed and built, and the program of the control process is compiled and downloaded the EMCU, and then the human-computer interaction interface of the system is implemented by LabVIEW. The results of the test show that the control system designed can control the rotating speed and the high-speed pendulum operation of PMSM precisely.


Author(s):  
N. Susheela ◽  
P. Satish Kumar

<p>The popularity of multilevel inverters have increasing over the years in various applications without use of a transformer and has many benefits. This work presents the performance and comparative analysis of single phase diode clamped multilevel inverter and a hybrid inverter with reduced number of components. As there are some drawbacks of diode clamped multilevel inverter such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem, an implementation of hybrid inverter that requires fewer components and less carrier signals when compared to conventional multilevel inverters is discussed. The performance of single phase diode clamped multilevel inverter and hybrid multilevel inverter for seven, nine and eleven levels is performed using phase disposition, alternate phase opposition disposition sinusoidal pulse width modulation techniques. Both the multilevel inverter are implemented for the above mentioned multicarrier based Pulse Width Modulation methods for R and R-L loads.  The total harmonic distortion is evaluated at various modulation indices. The analysis of the multilevel inverters is done by simulation in matlab / simulink environment.</p>


Author(s):  
Jalla Sowndarya ◽  
M. Shekar ◽  
N. V. Vinay Kumar

To generate the required reference vector than triangle comparison based PWM techniques for three-level inverters the space vector based PWM (SVPWM) strategies contain broader choice of switching sequences. This space vector based PWM technique involves in various steps. These steps are computationally exhaustive. The SVPWM has been used in three phase inverter control system. The center-aligned PWM is the most effective way for the Microprocessor Control Unit implementation of the SVPWM, because it can easily generate the center aligned PWM of the multilevel inverters for generation of the signal of space vector pulse width modulation (SVPWM), this concept brings out the method. The inverter leg switching times are generated by this algorithm and middle vector switching times are centered in a sampled interval. The proposed algorithm does not require any sector identification. And it reduces the computational time as a result. The adjacent voltage space vectors are forming the small triangles it is called sectors. Multilevel converters can meet the increasing demand of power ratings and power quality associated with reduced harmonic distortion and lower electromagnetic interference. Furthermore to optimize switching waveforms, space vector pulse-width modulation algorithms offer great flexibility among them. Finally the results are verified through MATLAB/SIMULINK


Sign in / Sign up

Export Citation Format

Share Document