scholarly journals The efficiency of the active controlled rectifier operation in the mains voltage distortion mode

Author(s):  
D. S. Krylov ◽  
O. I. Kholod

Goal. Checking the efficiency of the active rectifier with differences types of control systems in conditions of deep voltage distortions of a three-phase three-wire supply network. Methodology. The authors have used the Matlab/Simulink software environment to create a model of an active rectifier with various types of control systems as part of a frequency electric drive. We performed a series of simulations of the operating modes of an active rectifier with various control systems when the supply voltage is distorted. Results. When the active rectifier is operating in an unregulated mode, the distortions of the current and mains voltage exceed the maximum permissible values. The quality indicators of the mains current and mains voltage are significantly higher than the normally permissible values. In the absence of voltage distortions in the supply network, the operation of the active rectifier can effectively eliminate the distortions of the mains current, regardless of the type of control system of the active rectifier. In conditions of deep distortions of the supply network voltage, the operation of an active rectifier with a vector control system is more efficient than with a parametric control system. Originality. Criteria for determining the quality of consumed electricity at the connection point of the circuit are proposed. Practical significance. Recommendations have been developed for the use of active rectifier control systems when working with a distorted power supply voltage.

2013 ◽  
Vol 3 (6) ◽  
pp. 552-561 ◽  
Author(s):  
B. L. Dokic

Autonomy of power supply used in portable devices directly depends on energy efficiency of digital logic. This means that digital systems, beside high processing power and very complex functionality, must also have very low power consumption. Power consumption depends on many factors: system architecture, technology, basic cells topology-speed, and accuracy of assigned tasks. In this paper, a review and comparison of CMOS topologies techniques and operating modes is given, as CMOS technology is expected to be the optimum choice in the near future. It is shown that there is a full analogy in the behavior of digital circuits in sub-threshold and strong inversion. Therefore, synthesis of digital circuits is the same for both strong and weak operating modes. Analysis of the influence of the technology, MOS transistor threshold voltage (Vt) and power supply voltage (Vdd) on digital circuit power consumption and speed for both operating modes is given. It is shown that optimal power consumption (minimum power consumption for given speed) depends on optimal choice of threshold, and power supply voltage. Multi Vdd /Vt techniques are analyzed as well. A review and analysis of alternative logical circuit's topologies – pass logic (PL), complementary pass logic (CPL), push-pull pass logic (PPL) and adiabatic logic – is also given. As shown, adiabatic logic is the optimum choice regarding energy efficiency.


Author(s):  
G. Kalimbetov ◽  
A. Toigozhinovа ◽  
W. Wojcik

Among the promising automatic control systems, logical-dynamic control systems that change both the structure and parameters of the control device using switches formed on the basis of a certain logical algorithm have proven themselves well. The use of logical algorithms as part of MACS subsystems for complex technical objects makes it possible to increase the static and dynamic accuracy of control due to purposeful qualitative and quantitative changes in the control signal. This approach will give the control system fundamentally new properties that allow to fully take into account the nature and dynamics of the movement of the control object. When developing existing logical control algorithms, the issues of their application for multi-connected and multifunctional objects control were not considered. Common to existing logical algorithms is that when switching the structure and/or changing parameters, only the dynamics of its own subsystem is taken into account, which is unacceptable in the case of multi-connected dynamic object control, since cross-links have a significant impact on the quality of control. Thus, the problem of synthesis of logical algorithms for multi-connected objects control is an actual theoretical and applied problem. Despite the considerable amount of research conducted in this area, the application of logical algorithms for complex multidimensional objects control is not sufficiently considered, and there is no unified design concept for this type of MACS, taking into account the required quality of functioning in various operating modes. In this regard, there is a need to synthesize algorithms for logical multi-connected control that form control signals in order to coordinate the actions of all separate MACS subsystems in accordance with new external conditions and operating modes. The problem under consideration determined the purpose of this work and the research objectives.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2324
Author(s):  
Vitor Fernão Pires ◽  
Joaquim Monteiro ◽  
José Fernando Silva

One of the main power quality issues that can affect variable speed drives (VSDs) is the occurrence of voltage sags on their AC power supply. Voltage sags can affect the inverter nominal operation, leading to a malfunction of the AC motor. This paper presents an inverter with resilient capability to voltage sags. The topology consists of two conventional three-phase bridge inverters arranged to require just a single DC source. This inverter is also characterized by a voltage multilevel operation, providing the full advantages of multilevel converters without the need for level balancing. Associated with this AC motor driver, a control system based on a field-oriented controller with a vector voltage modulator that will enable voltage sag ride-through capability is proposed. The proposed control system does not require any changes in the occurrence of voltage sags. To verify the characteristics of the proposed drive and control system, simulation tests are provided. Simulation results confirm the voltage sag resilient capability of the proposed multilevel converter.


Author(s):  
R.M. Safina ◽  
◽  
M.S. Shkinderov ◽  
M.M. Mubarakov ◽  
◽  
...  

Access monitoring and control system are a set of software and hardware for restricting and registering the entrance to a given territory through special passages. In addition, when used in modern sports facilities, these systems must have a high capacity. This is necessary for the safe movement and timely evacuation of a large number of visitors. Therefore, the reliable operation of access monitoring and control systems is the most important technical challenge. Electromagnetic interference can disrupt the functions of the control system. One of the reasons for system malfunctions can be electromagnetic interference on the power supply network. The article analyzes the sources of electromagnetic interference in the power supply network. Experimental studies of the functioning of the control system under the influence of nanosecond noise on the power supply network have been carried out. A simulation model is proposed and the results of modeling electromagnetic interference in the control system when exposed to electromagnetic pulses through the power supply network are presented. The simulation results are in good agreement with the experimental data.


Author(s):  
Denis Krylov ◽  
Olga Kholod

The vast majority of electricity is used by industrial facilities in a converted form. At the same time, the use of semiconductor converters to obtain the required load parameters is intensively increasing. Current trends in the development and improvement of semiconductor converters are aimed at energy saving by improving their quality of work and reducing the impact on the power supply, load, and related consumers. Frequency converter with DC insert has become widespread and widely used. Its scheme is mainly based on an uncontrolled diode rectifier and an autonomous voltage inverter. Uncontrolled rectifiers are simple and reliable, but have two main disadvantages: the impossibility to recover electricity to the supply network and distortions of the source current shape. We can get rid of these disadvantages by using an active rectifier made according to the voltage source scheme instead of an uncontrolled rectifier. The operation of an active rectifier significantly depends on the type of its control system structure. This article aims to to improve the structure of the switches control system of the active rectifier scheme – voltage source built using a vector calculation algorithm; creation of a MatLab model of a three-phase active-controlled rectifier operating with a fixed modulation frequency and analysis of the influence of the input inductance value on the quality of its operation. The simulation results confirm that the improved structure of the vector control system proposed by the authors ensures high-quality operation of the active rectifier and electromagnetic compatibility of the frequency converter with the power supply network at the level allowed by the standards; simplification of the representation mathematical apparatus of the generalized vectors of currents and voltages at the construction of a vector control system of the active rectifier – voltage source practically did not influence qualitative indicators of the converter work in any way; a network filter must be used to eliminate the final distortions introduced into the source voltage by an additional nonlinear load.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Laila Katriani ◽  
Denny Darmawan ◽  
Ahmad Awaluddin Noer

This research aims to design a UV box control system as sterilization media using photodiode sensor. The study began in June until November 2014. The study was conducted at the Laboratory of Electronics and Instrumentation, Department of Physics Education, State University of Yogyakarta. The design of the UV box control system consists of two stages, namely, the design of the hardware and software design. Hardware design consists of a power supply design, sensor design,  comparator design, and a buzzer. Based on the results of tests that have been done shows the power supply voltage of 4.86 volts, the reference voltage of 3.76 volts, the comparator output voltage when low of 0.12 volts, the comparator output voltage when high of 3.0 volts. Keywords: UV-Box, Sterilization Media, photodiode


Metrologiya ◽  
2020 ◽  
pp. 31-45
Author(s):  
Yakov L. Liberman ◽  
Lyubov N. Gorbunova

The advantages of autogenerator displacement transducers in track control systems of metal – cutting machines, industrial robots, robotic complexes and flexible automated productions, such as high speed and durability of control systems, as well as their disadvantages-the lack of sufficiently complete accuracy characteristics, which affects the efficiency of equipment with track control systems, are considered. Formulated the research problem and described a special experimental setup, which studied the sensitivity of the self displacement transducers three types based on their mutual arrangement and screens of various metals (iron, steel 45, steel St3, 12KH18N10T steel, brass, dural and copper), as well as the conditions of their operation depending on the positioning of screens. The results of experimental data processing are presented, and any dependence of sensitivity on the screen material is not established. The assumption about the randomness and insignificance of the revealed differences is put forward and verified, and it is shown by the Cochran criterion that they are rightfully considered insignificant with a reliability of at least 95 %. The influence of power supply voltage fluctuations in the network on the accuracy characteristics of auto-generator displacement converters is studied and the results of the research are presented. A statistical test was carried out using the student’s criterion, which showed the absence of this influence on the accuracy characteristics. It is noted that hysteresis occurs during the operation of autogenerator displacement transducers and it is experimentally established that in most cases it increases with the transition from a diamagnetic screen to a ferromagnetic one. It is proposed to use the results of the research of precision characteristics in the design and efficient operation of the system limit control on the basis of self converters of displacements of the considered types, addressing issues about the need to use the voltage regulator when selecting screen material, etc.


2020 ◽  
Vol 10 (1) ◽  
pp. 5314-5319
Author(s):  
S. K. Filipova-Petrakieva ◽  
Y. M. Shopov

In the present paper a protective device based on the so-called “artificial” short circuit in the input of the network, is proposed. To ensure the necessary time for switching on the protection, the increased power supply voltage is delayed to reach in the input of the protected device by additional inductance L, which is connected in series to the power supply. As a result of this forced short circuit, the DC-power supply is switched off by a standard protective circuit-breaker. The short circuit is realized by a fast-acting semi-conductor device (e.g. diac + thyristor, etc.). The controlling signal is formed as a voltage across a capacitor that is a part of RC-circuits connected in parallel to the DC-power supply network. An analytical expression for this voltage, using a classical method for transient analysis, is obtained. The main aim is to determine the exact time of switching on the protection. The research is confirmed with simulations by OrCAD PSpice under the exact values of the elements in the RC-circuits considered. Two rapid increase cases in the power supply voltage are considered: positive jump and linear increase. The suggested solution is applicable for overvoltage protection of different electrical devices. The electrical scheme, based on the electronic components, ensures a fast-acting breaking, which guarantees secure protection. Based on the analytical expressions, the synthesis of the circuit for control and protection is made and the respective values of its elements are calculated.


Vestnik IGEU ◽  
2021 ◽  
pp. 70-79
Author(s):  
S.K. Ulybyshev ◽  
B.A. Staroverov

Implementation of automatic heating control systems allows us to reduce heat consumption by 10% in residential areas and 40% in office and educational buildings. Currently, there are heating control systems, however, they are applied only to a single-level two-pipe heating system. Development of an imitation model of heat flows redistribution is necessary to synthesize the system of interconnected dynamic heating control of a building. Unlike existing solutions, this research work considers the problem of unbalanced heat flow in a multi-level hierarchical heating system. Calculation of convective heat transfer in the room assumes that the air temperature at any given time is the same throughout the entire room. When we determine heat transfer through walling, it is assumed that the walling or its part has the same temperature of the planes perpendicular to the direction of air flow. In this case, the heat transfer process is described by a one-dimensional heat transfer equation. The developed model of heating control systems allows us to connect the automatic control modules, change control algorithms at the compilation stage and in the system state during the simulation process. In comparison with possible analogue models based on AnyLogic or ANSYS modeling systems, the presented model is the model of controlled object. It is easily combined with models of automatic control units and considers the problem of imbalance of heat flows. An example of the functional scheme of the local temperature control system around one battery is considered. Implementation of developed imitation model makes it possible to ensure a new level of quality control of technological processes of production and consumption of power energy resources by using modern information technologies and synthesizing a system of interconnected dynamic heating control. Possibilities of such modeling are focused on development of the uninterrupted and high-quality heat supply system, maintaining energy-efficient operating modes, as well as actual economic effect. The model under consideration allows us to simulate redistribution of heat flows in different operating modes of the heating system.


Sign in / Sign up

Export Citation Format

Share Document