scholarly journals A potentiometric sensor for determination of hydrochinone

Author(s):  
Galyna Petrushyna ◽  
Yuliya Boyko ◽  
Andrey Vishnikin ◽  
Yaroslav Bazel ◽  
Olga Chygvintseva

Hydroquinone has a high toxicity and therefore its content must be carefully monitored. The development of new easy-to-manufacture electrodes with the best analytical characteristics, which have a low cost of analysis, is an urgent task. An electrode based on graphite and a composite material consisting of polyurethane (as polymer matrix), graphite powder (to increase the electrical conductivity of the material) and 18-molybdodiphosphate (as a reagent) for hydroquinone determination was proposed. The advantages of polyurethanes for the electrodes modification include high adhesion of the polymer to the electrode surface due to the presence of a large number of polar groups. In addition, its specific properties provide high physical and mechanical properties of the polymer. The molybdenum heteropoly anion of the Wales-Dawson type 18-molybdodiphosphate anion P2Mo18O626- is a strong enough oxidant. The reaction between it and the some reducing agents is almost instantaneous, the recovery proceeds without destruction of P2Mo18O626-, which allows its repeated use. Interaction of P2Mo18O626- with different reducing agents occurs at different acidity of solutions. Thus, varying the pH of the solution allows determining of several substances in a compatible presence. Fine graphite powder in quantity from 50% to 70% was added in composite material to increase the electrical conductivity. P2Mo18O626- was added in an amount of 20% to the total weight of the composite material. The graphite electrode was modified with the synthesized polymer composite material. The main electrochemical characteristics of the proposed electrode are determined. Reduction of P2Mo18O626- with hydroquinone is proceeds in a neutral medium (pH 6). The response time at different concentrations of the hydroquinone is 8 min (at a temperature of 19 °C). This electrode does not have a "memory effect", the relative error is from 1.3 to 1.9%, and the potential deviation is in the range of 3-5 mV. The limit of determination is 2∙10-5 mol/l. The effect of the present substances was evaluated using a constant of selectivity. The proposed electrode has a high selectivity for a large number of inorganic ions. The electrode must be soaked in a solution of 3% hydrogen peroxide for 10 minutes to regeneration.

RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38140-38147 ◽  
Author(s):  
U. Kalsoom ◽  
A. Peristyy ◽  
P. N. Nesterenko ◽  
B. Paull

A low cost 3D stereolithography based printer has been used for a new polymer composite material with enhanced thermal properties containing 30 wt% micro-particulate diamond.


2021 ◽  
Vol 5 (7) ◽  
pp. 169
Author(s):  
Vardaan Chauhan ◽  
Timo Kärki ◽  
Juha Varis

The aim of this study was to design a tooling system for manufacturing automotive components using a natural fiber polymer composite (NFPC) material. As a case study, an automotive battery cover was selected and a compression molding tool was designed, keeping in mind the need for the simplicity of the tool and ensuring the low cost of this process. However, since the original part was injection-molded with virgin polypropene, some vital changes made in the part and tool design process were documented as a guideline to show new designers how to approach the design of parts and tools using a natural fiber polymer composite material. Additionally, the challenges faced during the manufacturing of composite parts with the new tool were also documented and solutions to these challenges were suggested for large-scale production. Finally, compressive testing was performed to evaluate the performance of the structure of the designed part and to compare the recycled polymer with NFPC material. Both wood and palm fiber composite material perform better in compression testing compared to the recycled polymer material.


Author(s):  
F. K. Abdrakhmanov ◽  
D. R. Volosov ◽  
S. A. Karpuzikov ◽  
S. A. Koytov ◽  
V. N. Melnikov ◽  
...  

At present, of special interest are polymer composite materials reinforced with carbon fibers - carbon fiber-reinforced plastic, which have increased specific strength, rigidity, wear resistance, etc. The purpose of this research is to study the physical and mechanical properties of composite materials reinforced with carbon and aramid fibers. According to the obtained temperature dependences of σ and E, we have selected the optimal variant of the polymer composite material on the basis of a nano-modified epoxy binder reinforced with carbon fibers


2021 ◽  
Vol 4 (12(112)) ◽  
pp. 61-70
Author(s):  
Volodymyr Dudin ◽  
Dmytro Makarenko ◽  
Oleksii Derkach ◽  
Yevhen Muranov

This paper reports a comprehensive laboratory study into the thermophysical, physical-mechanical characteristics, and tribological properties of the designed composite materials based on polytetrafluoroethylene. In the structures of machines and mechanisms, a significant role belongs to the tribological conjugations made from polymeric and polymer-composite materials. The reliability of machines, in general, depends to a large extent on the reliability of movable connections. Composite materials of nonmetallic origin have a low cost, they are resistant to most aggressive chemicals and are capable of operating under conditions without lubrication. It was established that the characteristics and properties of materials must be adapted to the working conditions of separately considered tribological conjugations. The mechanisms of thermal destruction have been established, both in the basic material and the carbon fiber based on it. It was found that carbon fiber, regardless of its content (quantity) in the polymer-composite material based on polytetrafluoroethylene, is mainly oriented perpendicular to the force application plane. It was found that with an increase in the carbon fiber content from 10 to 40 % by weight, the heat capacity decreases by 16‒39 % compared to the main material. The optimal operating modes for the designed composite materials have been substantiated on the basis of a pv factor: under a dry friction mode – up to 4 MPa∙m/s; at friction with lubrication – up to 36.4 MPa∙m/s. The dependence has been established of the friction coefficient on the operating modes of a composite material based on polytetrafluoroethylene containing 20 % by weight of carbon fiber when lubricated with oil and water. The results reported here make it possible to synthesize the physical-mechanical characteristics and tribological properties of composite materials in accordance with the required modes of tribological conjugation.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4518
Author(s):  
Hasan Borke Birgin ◽  
Antonella D’Alessandro ◽  
Simon Laflamme ◽  
Filippo Ubertini

Smart multifunctional composites exhibit enhanced physical and mechanical properties and can provide structures with new capabilities. The authors have recently initiated a research program aimed at developing new strain-sensing pavement materials enabling roadway-integrated weigh-in motion (WIM) sensing. The goal is to achieve an accurate WIM for infrastructure monitoring at lower costs and with enhanced durability compared to off-the-shelf solutions. Previous work was devoted to formulating a signal processing algorithm for estimating the axle number and weights, along with the vehicle speed based on the outputs of a piezoresistive pavement material deployed within a bridge deck. This work proposes and characterizes a suitable low-cost and highly scalable cement-based composite with strain-sensing capabilities and sufficient sensitivity to meet WIM signal requirements. Graphite cement-based smart composites are presented, and their electromechanical properties are investigated in view of their application to WIM. These composites are engineered for scalability owing to the ease of dispersion of the graphite powder in the cement matrix, and can thus be used to build smart sections of road pavements. The research presented in this paper consists of electromechanical tests performed on samples of different amounts of graphite for the identification of the optimal mix in terms of signal sensitivity. An optimum inclusion level of 20% by weight of cement is obtained and selected for the fabrication of a plate of 30 × 15 × 5 cm3. Results from load identification tests conducted on the plate show that the proposed technology is capable of WIM.


Author(s):  
Oleksii Derkach ◽  
◽  
Oleh Kabat ◽  
Dmytro Makarenko ◽  
Borys Kharchenko ◽  
...  

The purpose of the work is to study and determine material "TEKRONE" belonging to the group of polymers, substantiate such a polymer composite material (PCM) in the modernization of the plow blade, which is not inferior to the "TEKRONE" composite and is much cheaper. This requires the study of the physical and mechanical properties of the material. The following studies of the physical and mechanical properties of the "TEKRONE" material have been conducted: density, heat endurance, and tensile strength. It has been found out that when heated over an open flame, the polymer softens with subsequent melting. There is no charring, destruction in the solid state. Therefore, the TEKRONE material is a thermoplastic. After pyrolytic decomposition 0.5… 0.7% of the initial sample weight remains. PCM TEKRONE density is 954 kg/m3. The value of this parameter coincides with the polyethylene density, which, depending on the brand, varies from 910 to 980 kg/m3. The tensile strength stress of the investigated samples of PCM TEKRONE is 17.9 MPa, which is very close to the values of polyethylene (14.8-17.0 MPa). The laboratory studies have shown that TEKRONE polymer-composite material in its properties corresponds to the materials based on polyethylene. It is determined that the closest in properties are PE 500 and PE 1000 polyethylene. It is advisable to recommend the use of PE 500 and PE 1000 polyethylene as a basis for the manufacture of plow blade of PLN type.


2019 ◽  
Vol 489 (4) ◽  
pp. 373-378
Author(s):  
O. V. Lebedev ◽  
M. Yu. Yablokov ◽  
L. A. Mukhortov ◽  
G. P. Goncharuk ◽  
A. N. Ozerin

The results of a study of the migration of electrically conductive nanosized carbon particles of various types to the surface of the melt of the polymer composite are presented. The real-time measurement of the kinetics of changes in the electrical conductivity of the melt of the polymer composite at a constant temperature, separately for the bulk and surface components of the electrical conductivity, made it possible to identify the basic features of the process. The results obtained indicate that the formation of a surface layer of a composite saturated with electrically conductive nanoparticles is common when using filler nanoparticles with a different form factor. The role of polymer macromolecules in the kinetics of migration of carbon nanoparticles to the melt surface of a polymer composite material is discussed.


2019 ◽  
Vol 0 (2) ◽  
pp. 22-28
Author(s):  
A.M. Kudrin ◽  
◽  
O.A. Karaeva ◽  
K.S. Gabriel’s ◽  
◽  
...  

Author(s):  
T. N. Antipova ◽  
D. S. Shiroyan

The system of indicators of quality of carbon-carbon composite material and technological operations of its production is proved in the work. As a result of the experimental studies, with respect to the existing laboratory equipment, the optimal number of cycles of saturation of the reinforcing frame with a carbon matrix is determined. It was found that to obtain a carbon-carbon composite material with a low cost and the required quality indicators, it is necessary to introduce additional parameters of the pitch melt at the impregnation stage.


Sign in / Sign up

Export Citation Format

Share Document