scholarly journals Defect Identification in Butt Weld Joint by Ultrasonic Method Phased Array and X-Ray Technique

2016 ◽  
Vol 16 (5) ◽  
pp. 955-961 ◽  
Author(s):  
Radoslav Konar ◽  
Michal Bohacik ◽  
Milos Mician
Author(s):  
Cunjian Miao ◽  
Weican Guo ◽  
Zhangwei Ling ◽  
Yangji Tao ◽  
Ting Yu ◽  
...  

Abstract Steel layered high-pressure hydrogen vessel is one of different kinds of high-pressure vessel, which is invented in China and is widely equipped in hydrogen refueling stations for its good safety and storage functions. Many of these vessels are put into application these years, and it is nearly the time for these vessels to go through periodic inspection. However, there is no such a method for the periodic inspection especially on the butt weld connecting the double-layer head and the interface forging. To conquer the difficulties about the periodic inspection, a set of periodic inspection methods was first proposed in a lasted released Chinese group standard, in which the inner ultrasonic phased array is considered to be the most complicated detecting approach. To establish effective inspection parameters, simulations and experiments were conducted on the factors, including coupling, elements and aperture, focal law, scanning approaches and ultrasound field. Standard test block and contrast test block were designed and machined and tested, then a series of feasible parameters were determined. Thus, specific probe, wedge and instrument were manufactured, and the inspection on the actual vessel product was carried out. The results showed that the proposed ultrasonic method and its inspection parameters could meet the periodic inspection well. Finally, the periodic inspection methods were established and issued as a standard.


2013 ◽  
Vol 772 ◽  
pp. 193-199 ◽  
Author(s):  
Carsten Ohms ◽  
Rene V. Martins

Bi-metallic piping welds are frequently used in light water nuclear reactors to connect ferritic steel pressure vessel nozzles to austenitic stainless steel primary cooling piping systems. An important aspect for the integrity of such welds is the presence of residual stresses. Measurement of these residual stresses presents a considerable challenge because of the component size and because of the material heterogeneity in the weld regions. The specimen investigated here was a thin slice cut from a full-scale bi-metallic piping weld mock-up. A similar mock-up had previously been investigated by neutron diffraction within a European research project called ADIMEW. However, at that time, due to the wall thickness of the pipe, stress and spatial resolution of the measurements were severely restricted. One aim of the present investigations by high energy synchrotron radiation and neutrons used on this thin slice was to determine whether such measurements would render a valid representation of the axial strains and stresses in the uncut large-scale structure. The advantage of the small specimen was, apart from the easier manipulation, the fact that measurement times facilitated a high density of measurements across large parts of the test piece in a reasonable time. Furthermore, the recording of complete diffraction patterns within the accessible diffraction angle range by synchrotron X-ray diffraction permitted mapping the texture variations. The strain and stress results obtained are presented and compared for the neutron and synchrotron X-ray diffraction measurements. A strong variation of the texture pole orientations is observed in the weld regions which could be attributed to individual weld torch passes. The effect of specimen rocking on the scatter of the diffraction data in the butt weld region is assessed during the neutron diffraction measurements.


2021 ◽  
pp. 50-57
Author(s):  
A. N. Kireev ◽  
M. A. Kireeva

The article provides a review and analysis of the defect identification method for determining the size of discontinuities when diagnosing various machine parts and units by the manual ultrasonic method. This method makes it possible to determine the equivalent size of discontinuities of various types without using standard samples of an enterprise: point planar and volumetric; extended planar and volumetric. The method is based on the use of the relationship between the amplitude and time characteristics of the echo signal from the discontinuity and the backside signal in the object being diagnosed and the equivalent size of the discontinuity. The article presents the mathematical apparatus for the implementation of this method. Also presented is a software product that allows you to automate calculations when using this defect identification method. The article contains experimental studies of the method for determining the equivalent dimensions of discontinuities of various types, which have shown its high reliability. The maximum value of the relative error in determining the equivalent size of a point planar discontinuity was 2.867 %. The maximum value of the relative error in determining the equivalent size of a point volumetric discontinuity was 1.986 %. The maximum value of the relative error in determining the transverse equivalent size of an extended planar discontinuity was 0.667 %. The maximum value of the relative error in determining the transverse equivalent size of an extended volumetric discontinuity was 1.95 %.


2021 ◽  
Vol 21 (1) ◽  
pp. 27-42
Author(s):  
A. Tamadon ◽  
D. J. Pons ◽  
K. Chakradhar ◽  
J. Kamboj ◽  
D. Clucas

Abstract A variety of tool shoulder designs comprising three families i.e. blade, spiral and circular shaped scrolls, were produced to improve the material flow and restrictions to avoid the tunnel void. The bobbin tools were manufactured by 3D printing additive manufacturing technology using solid filament. The butt weld joint was produced by each tool using plasticine as the workpiece material. The apparent surface features and bi-colour cross-sections provided a physical flow comparison among the shoulder designs. For the bobbin friction stir welding (BFSW), the tool shoulder with a three-spiral design produced the most stability with the best combination of the flow patterns on surface and cross-sections. The circular family tools showed a suitable intermixing on the surface pattern, while the blade scrolls showed better flow features within the cross-sections. The flow-driven effect of the shoulder features of the bobbin-tool design (inscribed grooves) was replicated by the 3D-printed tools and the analogue modelling of the weld samples. Similar flow patterns were achieved by dissimilar aluminium-copper weld, validating the accuracy of the analogue plasticine for the flow visualization of the bobbin friction stir welding.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5814
Author(s):  
Edyta Spychał ◽  
Przemysław Czapik

In this article, the effect of hydroxyethyl methyl cellulose (HEMC), which is a polymeric viscosity modifying admixture on the mineral based composites setting processes, was studied. Previous studies available in the literature included the evaluation of the influence of this admixture on the hydration processes of cement or lime pastes. In this paper, the analysis of this issue was extended to include cement-lime composites. The composition of the pastes and mortars differed in the type of binder (the tests were carried out on cement-based and cement-lime-based materials, in which the cement was replaced in 50% with hydrated lime), as well as the amount and viscosity of the admixture. The study of mortars setting processes and hardening processes using the ultrasonic method was supplemented in the work with calorimetric measurements and phases analysis by the X-ray diffraction method. Finally, it was found that the HEMC reduces the rate of a hydration reaction in cement and cement-lime pastes. The amount of admixture used has a greater influence on the changes taking place during the setting process than the admixture viscosity or the type of binder.


2015 ◽  
Vol 818 ◽  
pp. 256-259
Author(s):  
Erika Hodúlová ◽  
Ingrid Kovaříková ◽  
Beáta Šimeková ◽  
Koloman Ulrich

The non-destructive inspection of duplex steels is a big challenge, being composed of ferrite and austenite, have some particularities. When using ultrasound, for instance, its waves propagate well in ferrite, but suffer strong attenuation, scattering and refraction in austenite. The aim of this work is to use the Phased Array ultrasonic inspection method for the thin (4 mm) duplex steel weld joint inspection. The experimental sample was made ​​of duplex steel shaped tube with an outer diameter of 44 mm and a wall thickness of 3.8 mm welded with a laser beam. The experiment was necessary to verify attenuation of duplex steel. On the base material and the weld joint were made the artificial defects, in which the adjusted sensitivity of the ultrasonic device was set.The result of the measuring was the defect echo coming from the weld root layer. The length (about 25 mm) can only be estimated due to the inaccurate constant velocity of probe motion along the surface.


2020 ◽  
Vol 32 (1) ◽  
pp. 012016 ◽  
Author(s):  
Khot Rahul S. ◽  
T. Venkateswara Rao ◽  
Abhishek Keskar ◽  
H. N. Girish ◽  
Puttaswamy Madhusudan

Sign in / Sign up

Export Citation Format

Share Document