scholarly journals Compositionally Disordered Doped with Cerium Crystalline Garnet Type Materials for Brighter and Faster Scintillations

2021 ◽  
Vol 12 (4) ◽  
pp. 280-285
Author(s):  
M. V. Korzhik

Ce-doped tetracationic garnets (Gd, M)3Al2Ga3O12(M = Y, Lu) form a family of new multipurpose promising scintillation materials. The aim of this work was to evaluate the scintillation yield in the materials of quaternary garnets activated by cerium ions with partial isovalent substitution of the matrix-forming gadolinium ions by yttrium or lutetium ions.Materials were obtained in the form of polycrystalline ceramic samples, and the best results were shown by samples obtained from the raw materials produced by the coprecipitation method. It was found that ceramics obtained from coprecipitated raw materials ensure a uniform distribution of activator ions in the multi-cationic matrices, which enables the high light yield and fast scintillation kinetics of the scintillation. It was demonstrated that the superstoichiometric content of lutetium/gadolinium in the material is an effective method to suppress phosphorescence accompanied scintillation. For ceramics with the composition (Gd, Lu)3Al2Ga3O12 , a scintillation yield of more than 50.000 ph/MeV was achieved. The scintillation kinetics was measured to be close to the kinetics with a decay constant of 50 ns.In terms of the set of the parameters, the developed scintillation materials are close to the recently developed alkali halide materials LaBr3:Ce, GdBr3:Ce. Moreover, they have high mechanical hardness, are characterized by the absence of hygroscopicity, and are better adapted to the manufacture of pixel detectors used in modern devices for medical diagnostics.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Martin Pokorný ◽  
Vladimir Babin ◽  
Alena Beitlerová ◽  
Karel Jurek ◽  
Jan Polák ◽  
...  

AbstractWe report a breakthrough concept for a bulk single crystal as a heavy aluminum perovskite scintillator, where due to bandgap engineering by a balanced Gd admixture in a Lu cation sublattice, the scintillation performance dramatically increases. In an optimized composition of (Lu, Gd)AlO3:Ce (LuGdAP:Ce), the light yield approaches 21,000 phot/MeV, which is close to that of classical but much less dense YAP:Ce and 50% higher than the best LuYAP:Ce reported in the literature. Moreover, contrary to LuYAP:Ce, the LuGdAP host maintains a high effective atomic number close to that of LuAP:Ce (Zeff = 64.9), which is comparable to commercial LSO:Ce. An enormous decrease in afterglow on the millisecond time scale and acceleration in the rise time of the scintillation response further increase the application potential of the LuGdAP host. The related acceleration of the transfer stage in the scintillation mechanism due to diminishing electron trap depths is proven by thermally stimulated luminescence (TSL). Furthermore, we quantitatively characterize and model the energy transfer processes that are responsible for the change in the photoluminescence and scintillation decay kinetics of Ce3+ in the LuGdAP matrix. Such an innovative (Lu, Gd)AP:Ce scintillator will become competitive for use in applications that require heavy, fast, and high light yield bulk scintillators.


Nanoscale ◽  
2021 ◽  
Author(s):  
Quan Zhou ◽  
Jiwei Ren ◽  
Jiawen Xiao ◽  
Lin Lei ◽  
Feiyi Liao ◽  
...  

Progress towards high performance X-ray detection and dynamic imaging applications, including nondestructive inspection, homeland security, and medical diagnostics, requires scintillators with high light yield, reasonable decay time, low cost, and...


Author(s):  
N. V. Larcher ◽  
I. G. Solorzano

It is currently well established that, for an Al-Ag alloy quenched from the α phase and aged within the metastable solvus, the aging sequence is: supersaturated α → GP zones → γ’ → γ (Ag2Al). While GP zones and plate-shaped γ’ are metastable phases, continuously distributed in the matrix, formation of the equilibrium phase γ takes place at grain boundaries by discontinuous precipitation (DP). The crystal structure of both γ’ and γ is hep with the following orientation relationship with respect to the fee α matrix: {0001}γ′,γ // {111}α, <1120>γ′,γ, // <110>α.The mechanisms and kinetics of continuous matrix precipitation (CMP) in dilute Al-Ag alloys have been studied in considerable detail. The quantitative description of DP kinetics, however, has received less attention. The present contribution reports the microstructural evolution resulting from aging an Al-Ag alloy with Ag content higher than those previously reported in the literature, focusing the observations of γ' plate-shaped metastable precipitates.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 48
Author(s):  
Wenjun Song ◽  
Min Lei ◽  
Mingpan Wan ◽  
Chaowen Huang

In this study, the phase transformation behaviour of the carburised layer and the matrix of 23CrNi3Mo steel was comparatively investigated by constructing continuous cooling transformation (CCT) diagram, determining the volume fraction of retained austenite (RA) and plotting dilatometric curves. The results indicated that Austenite formation start temperature (Ac1) and Austenite formation finish temperature (Ac3) of the carburised layer decreased compared to the matrix, and the critical cooling rate (0.05 °C/s) of martensite transformation is significantly lower than that (0.8 °C/s) of the matrix. The main products of phase transformation in both the carburised layer and the matrix were martensite and bainite microstructures. Moreover, an increase in carbon content resulted in the formation of lamellar martensite in the carburised layer, whereas the martensite in the matrix was still lath. Furthermore, the volume fraction of RA in the carburised layer was higher than that in the matrix. Moreover, the bainite transformation kinetics of the 23CrNi3Mo steel matrix during the continuous cooling process indicated that the mian mechanism of bainite transformation of the 23CrNi3Mo steel matrix is two-dimensional growth and one-dimensional growth.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 320-351
Author(s):  
Serge Nagorny

Recent progress in Cs2HfCl6 (CHC) crystal production achieved within the last five years is presented. Various aspects have been analyzed, including the chemical purity of raw materials, purification methods, optimization of the growth and thermal conditions, crystal characterization, defect structure, and internal radioactive background. Large volume, crack-free, and high quality CHC crystals with an ultimate scintillating performance were produced as a result of such extensive research and development (R & D) program. For example, the CHC crystal sample with dimensions ∅23 × 30 mm3 demonstrates energy resolution of 3.2% FWHM at 662 keV, the relative light output at the level of 30,000 ph/MeV and excellent linearity down to 20 keV. Additionally, this material exhibits excellent pulse shape discrimination ability and low internal background of less than 1 Bq/kg. Furthermore, attempts to produce a high quality CHC crystal resulted in research on this material optimization by constitution of either alkali ions (Cs to Tl), or main element (Hf to Zr), or halogen ions (Cl to Br, I, or their mixture in different ratio), as well as doping with various active ions (Te4+, Ce3+, Eu3+, etc.). This leads to a range of new established scintillating materials, such as Tl2HfCl6, Tl2ZrCl6, Cs2HfCl4Br2, Cs2HfCl3Br3, Cs2ZrCl6, and Cs2HfI6. To exploit the whole potential of these compounds, detailed studies of the material’s fundamental properties, and understanding of the variety of the luminescence mechanisms are required. This will help to understand the origin of the high light yield and possible paths to further extend it. Perspectives of CHC crystals and related materials as detectors for rare nuclear processes are also discussed.


2017 ◽  
Vol 375 ◽  
pp. 29-39
Author(s):  
Boris A. Tarasov ◽  
Stepan N. Nikitin ◽  
Dmitry P. Shornikov ◽  
Maria S. Tarasova ◽  
Igor I. Konovalov

Paper presents the results of the growth rate of the interaction layer of uranium-molybdenum dispersed fuel in aluminum matrix and influence of silicon alloying on it. The growth process of amorphous interaction layer depends on the radiation diffusion which is proportional to the fission rate in the power of 1⁄4. The alloying of the matrix by silicon does not lead to a change in the mechanism and kinetics of the interaction layer growth, but only slows it down.


1989 ◽  
Vol 4 (1) ◽  
pp. 44-49 ◽  
Author(s):  
S. A. Myers ◽  
C. C. Koch

There is controversy in the literature regarding the existence of the metastable γ′ phase with an ordered Ll2 structure in rapidly solidified Fe–Ni–Al–C alloys. In this study, the quench rate–metastable structure dependence was examined in the Fe–20Ni–8Al–2C (weight percent) alloy. The effect of silicon on the kinetics of phase formation was studied by adding two weight percent silicon to a base alloy of Fe–20Ni–8Al–2C. Samples were rapidly solidified in an arc hammer apparatus and examined by transmission electron microscopy. In the Fe–20Ni–8Al–2C alloy, the nonequilibrium γ′ and γ phases were found in foils 65 to 100 μm thick. At higher quench rates, i.e., thinner samples, the matrix was observed to be disordered fcc γ with K-carbide precipitates. Samples containing silicon were found to have a matrix composed of γ′ and γ structures when the foils were thicker than 40 μm. At higher quench rates, the matrix was disordered fcc γ with K-carbide precipitates. The nonequilibrium γ′ and γ structures are present in samples with or without silicon, but are observed at higher cooling rates with the addition of silicon. This sensitivity to cooling rate and composition in resulting metastable structures may explain the differences reported in the literature for these rapidly solidified materials.


From a study of the u. v., visible, near i. r. and e. s. r. spectra induced by γ -irradiation at 77°K in glassy MTHF and in glassy MTHF containing various additives and from a study of controlled temperature increases on these spectra, the following conclusions are drawn. (1) The primary products of the radiolysis are electrons ( e - ) and positive ions ( MTHF + ) which undergo a rapid ion-molecule reaction to give O CH 3 radicals ( R ⋅). (2) e - can either be trapped in the glassy MTHF matrix or can be captured by either napththalene, ferric chloride, carbon tetrachloride, nitrous oxide or trans -stilbene if these substances are present. (3) The e - T are bleachable by light or heat and disappear independently of the radicals R⋅ without either augmentation of R⋅ or the production of any new radical species. (4) e - T and R⋅ disappear thermally and independently by second-order reactions, the rate constants being K e - + e - (M -1 S -1 ) = 10 12⋅4±1⋅1 exp ─ [0⋅85 ± 0⋅10 kcal/mole/ R ( T ─ 75)] and K R˙ + R˙ (M -1 S -1 ) = 10 13⋅3±1⋅4 exp ─ [1⋅20 ± 0⋅15 kcal/mole/ R ( T ─ 75)]. These rate expressions suggest that both reactions are diffusion controlled at low temperatures in the glassy phase. (5) The kinetics of the thermal bleaching of e - T indicate that the electrons migrate distances of about 150 Å from their parent positive ions before being trapped in the matrix. (6) The effect of FeCl 3 in reducing the formation of e - T at 77°K and its lack of effect on the thermal bleaching of e - T suggests that the reaction e - + FeCl 3 → FeCl 2 + Cl - only occurs before the electron is thermalized.


2021 ◽  
Vol 9 (16) ◽  
pp. 212-220
Author(s):  
Liubomyr Khomichak ◽  
◽  
Inha Kuznietsova ◽  
Svetlana Vysotska ◽  
Sergiy Tkachenko ◽  
...  

Introduction. Processing of grain raw material with influence on starch or albumens by application of heat treatment creates the variety of functional properties of a product and is perspective in the modern terms vital functions of man. Research methods and methods. The flour obtained from wheat of the Ascanian wheat and from wheat of the soft varieties: Sophia ("sweet wheat"), Blond (soft) and Chornobrova (enriched with micro- and macronutrients) were used in the study. Thermal modification of flour samples was carried out in a convective manner. The control sample for determining the quality indicators is obtained in industrial conditions, extruded wheat flour produced by LLC "AS groups, LTD". Research results. The obtained kinetic dependence shows the gradual loss of moisture standards with different speed which accordingly influences on duration of drying. The moisture content of the drying agent most affects the intensity at the initial stage of the constant drying rate. With an increase in the moisture content of the coolant, the period of constant drying increases and the amount of evaporated moisture increases during this period. With the subsequent removal of moisture from raw materials, the degree of influence of this parameter on the intensity decreases. The nature of the drying curves is the same and the recommended process for obtaining modified flour is the process duration of 300 minutes or 5 hours. It was determined microscopically, that the samples of dried wheat flour have a purpose and are partially destroyed by starch granules and amorphization of biocomposite materials. Based on the data on the kinetics of drying flour samples, the kinetic coefficients and values of the critical moisture content for drying wheat flour were calculated, which is 1.18-1.30 %. It was determined that for the sensorial indicators the obtained samples have indicators characteristic of the varietal characteristics of wheat, from which the flour was taken. In terms of physical and chemical parameters, the modified wheat flour samples are not inferior to the well-known industrial sample of extruded flour. Conclusions. Use of flour, obtained from the wheat with different correlation of amilose and amylopectin, positively influences on a technological process and allows to extend the assortment of modified starch products, and accordingly, food products. Kinetics of the convective drying standards of the flour is investigated. Researches showed that a it is physically modified flour obtained from the different sorts of the soft wheat is not inferior in quality to the extruded wheat flour.


Sign in / Sign up

Export Citation Format

Share Document