scholarly journals Modification of a Ceramic Brick Additives of Inorganic Technogenic Products of Water Treatment of Combined Heat and Power Plant

2020 ◽  
Vol 19 (3) ◽  
pp. 204-214
Author(s):  
A. S. Kauchur ◽  
V. K. Sheleh ◽  
V. I. Zhornik ◽  
S. A. Kovaliova

Waste of combined heat and power plants represents a certain danger to the environment, and hence the economic problems. However such waste contains substances that are advisable to use for production of construction and finishing materials. Technogenic products of water treatment from the Yuzhnaya combined heat and power plant (sludges of chemical water treatment – code 8410500) are a calcite mixture containing more than 64 wt. % calcite. The mineralogical composition of inorganic waste has been determined while using X-ray and IR-spectral researches. Mechanical activation of calcite inorganic wastes leads to grinding of calcite and a decrease in the amount of adsorbed water, which affects the increase in the content of silica frame structures, the reactivity of which directly depends on their quantity. Changes in the structure of silicon dioxide during mechanical activation are established according to IR studies. The results of X-ray and IR studies of the Zapolie deposit clay used in ceramic brick production technology make it possible to attribute it to raw materials with high reactivity. An experimental batch of ceramic bricks has been produced at JSC “Obolsky Ceramic Plant” with addition of calcite inorganic waste from combined heat and power plants. An X-ray diffraction analysis of samples of the obtained bricks having standard composition and with addition of waste has been carried out. The influence of calcite inorganic waste content in the feedstock on the process of ceramic brick structure formation has been stu-died in the paper. Addition of chemical water treatment waste containing calcium carbonate up to 15 wt. % to the Zapolye clay mixture helps to reduce a firing temperature and an appearance of the melt. This leads to crystallization processes of solid minerals from the melt and an increase in the amount of glass phase which contributes to improvement of strength properties in ceramic bricks. The possibility of using inorganic waste (sludges of chemical water treatment – code 8410500) of combined heat and power plants as a component of emaciated additives in clay raw materials in the process of ceramic brick production has been established in the paper.

2020 ◽  
Vol 216 ◽  
pp. 01082
Author(s):  
Elvira Khusnutdinova ◽  
Larisa Nikolaeva

This paper proposes an adsorption-based method of removing sulfur dioxide from the flue gases produced by the thermal power plant. A power plant waste – chemical water treatment sludge available at Kazan CHPP-1 – was used as an adsorption material. Presented here is the chemical composition of the chemical water treatment sludge for a modified sorption material to be designed therefrom. The new sorp-tion material was trial tested for removal of sulfur dioxide from gases. This resulted in kinetic dependence and adsorption isotherm. The test results were then used to design the adsorber. The economic and envi-ronmental effect of using the chemical water treatment sludge as the sorption material was calculated.


2020 ◽  
Author(s):  
Katarina Šter ◽  
Sabina Kramar

<p>Al-rich mineral resources are one of the essential components for the production of the novel sustainable mineral binders. Belite-sulfoaluminate (BCSA) cements, which are considered as low-carbon and low-energy, allows the substitution of natural raw materials with secondary ones. In East-Southeast European countries (ESEE) there are huge amounts of various industrial and mine residues that are either landfilled or currently have a low recycling rate. These residues are generated from mining activities (mine waste) and as a by product of different types of industry, such as thermal power plants, steel plants or the aluminium industry (slags, ashes, red mud, etc.). Within the framework of the RIS-ALiCE project, in cooperation with 15 project partners from Slovenia, Austria, France, Hungary, Serbia, Bosnia and Herzegovina and Macedonia, a network of relevant stakeholders has been established in the field of currently unused aluminium-containing mine and industrial residues. Inside the created network mine and industrial residues have been mapped and valorised in order to evaluate their suitability for the use in innovative and sustainable low CO<sub>2</sub>-mineral binder production. Aluminium-containing residues are characterized with respect to their chemical, physical and radiological composition using different analytical methods such as X ray fluorescence spectroscopy, ICP optical emission spectrophotometry, gravimetry, X ray powder diffraction, gamma spectroscopy, etc. The long-term activity of network between wastes holders/producers and mineral end users will be enabled via developed Al-rich residues registry, including a study of the potential technological, economic and environmental impacts of applying the innovative methodology of the sustainable secondary raw materials management in ESEE region. Developed registry with the data valuable for both, waste providers as waste users in ESEE region, can be later-on upscaled also to other regions of Europe. It will provide the data on the available and appropriate Al-rich secondary resources, which will enablethe production of innovative low-CO<sub>2 </sub>cements.</p><p><strong>Keywords:</strong> secondary raw material, alternative binders, Al-rich residues, networking, mapping, valorisation, registry.</p>


2021 ◽  
Vol 2 (2) ◽  
pp. 146-154
Author(s):  
Zoltán Korényi

Összefoglaló. A dolgozat témája a különböző erőműfajták életciklusra vonatkozó fajlagos anyagigényének a vizsgálata. Az elemzések a nemzetközi szakirodalmi források felhasználásával történtek. Módszere, a bázisadatok elemzése, majd az anyagigényeknek az erőmű beépített teljesítményére és az életciklus alatt megtermelt villamosenergiára vonatkoztatott fajlagos értékek meghatározása. Az eredmények azt mutatják, hogy a nap- és szélerőművek elterjedésével a hagyományos erőművek által felhasznált fosszilis energiaforrások (pl. a szén) bent maradnak ugyan a földben, de cserébe az új technológia legyártásához a hagyományos anyagokból (beton, acél, alumínium, réz stb.) fajlagosan jóval nagyobb mennyiségekre lesz szükség. Emellett megnő a ritkán előforduló fémek (gallium, indium stb.) felhasználása, ami Európában, a lelőhelyek hiányában, új kockázatokkal jár. Summary. The topic of the study is to determine the material use of different power plant types. This is a part of the known life cycle analysis (LCA). The aim of LCA is to determine the impact of human activity on nature. The procedure is described in the standards (ISO 14040/41/42/42). Under environmental impact we mean changes in our natural environment, air, water, soil pollution, noise and impacts on human health. In the LCA, the environmental impact begins with the opening of the mine, continues with the extraction and processing of raw materials, and then with the production of equipment, construction and installation of the power plant. This is followed by the commissioning and then operation of the power plants for 20-60 years, including maintenance. The cycle ends with demolition, which is followed by recycling of materials. The remaining waste is disposed of. This is the complex content of life cycle analysis. Its purpose is to determine the ecological footprint of man. The method of the present study is to isolate a limited area from the complex LCA process. This means determining the amount of material needed to build different power plants, excluding mining and processing of raw materials. Commercially available basic materials are built into the power plant’s components. The research is based on the literature available in the international area. The author studied these sources, analysed the data, and checked the authenticity. It was not easy because the sources from different times, for different power plants showed a lot of uncertainty. In overcoming the uncertainties, it was a help that the author has decades of experience in the realisation of power plants. It was considered the material consumption related to the installed electricity capacity of the power plant (tons/MW) as basic data. The author then determined the specific material consumptions, allocated to the electric energy generated during the lifetime, in different power plants. The calculation is carried out with the help of the usual annual peak load duration hours and the usual lifetime of the power plants. The results show that with the spread of solar and wind energy, the fossil energy sources previously needed for conventional power plants will remain inside the Earth, but in exchange for the production of new technological equipment from traditional structural materials (concrete, steel, aluminium, copper and plastic), the special need multiplies. If we compare the power plants using renewable energy with the electric energy produced during the life cycle of a nuclear power plant, the specific installed material requirement of a river hydropower plant is 37 times, that of an onshore wind farm it is 9.6 times, and that of an outdoor solar power park is 6.6 times higher. Another important difference is that wind turbines, solar panels and batteries also require rare materials that do not occur in Europe (e.g. gallium, indium, yttrium, neodymium, cobalt, etc.). This can lead to security risks in Europe in the long run.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3477-3488
Author(s):  
He-Xin Liu ◽  
Jia-Fan Xiao ◽  
Hou-Zhang Tan ◽  
Yi-Bin Wang ◽  
Fu-Xin Yang

The control of fouling deposition on the main equipment has always been an im-portant issue concerned by scientific research and industrial application. How-ever, severe fouling deposits on the induced fan blade and the low temperature economiser were found in a 1000 MW coal-fired power plant with ultra-low emission. The deposit samples were collected and analysed through X-ray dif-fraction spectrometer, X-ray fluorescence, elemental analyser and SEM with en-ergy dispersive spectrometers. The result shows that the deposits are mainly composed of tschermigite (NH4)Al(SO4)2 ? 12H2O, letovicite (NH4)3H(SO4)2, cal-cium sulphate CaSO4, and quartz SiO2. The ammonium sulphate is the main component of the fouling deposits. It acts as an adhesive and makes an important contribution to the deposition. The analysis shows that the ammonia slip from denitrification system and the unreasonable temperature setting are the main reasons for fouling deposition. It is suggested that the high concentration of am-monium slip at denitrification system and the rapid condensation of the sulphuric acid mist at heat exchanger should be paid more attention in coal-fired power plants.


2020 ◽  
Author(s):  
◽  
Romāns Oļekšijs

Change of market principles and European Union environmental targets leads to more cycling operations of combined cycle units, which used to operate in baseload regime. Due to generation imbalanced allocation, which mainly provoked by intermitting generation, power network becomes less stable. As a result, new requirements for generator connection in Europe were developed, challenging existing power plants to fulfill them. All this leads to higher operational costs of combined heat and power plants and solutions must be found to reduce costs and/or increase revenue. Cycling operation negative impact on power plant thermal equipment is well studied. This Doctoral Thesis reviews the cycling operation impact on combined heat and power plant main electrical equipment and provides empirical formulas to evaluate reliability for different operation scenarios. Solutions for power plant modernisations to fulfill new requirements and provide ancillary services are analyzed. Possible costs of ancillary service provision from combined heat and power plants as well as sites connected to transmission system are evaluated, providing information for further calculations. Detailed methodology of solar generated energy applicability for self-consumption needs was developed, which allows to choose the right power of installation to make the fastest payback time. A battery storage optimization methodology was developed to reduce self-consumption costs of power plant interacting with the solar generation or operating separately. The methodology for combined heat and power plant operation planning enhancement was developed, which use gain from ancillary service provision to move startup’s back in time or shutdowns further in future to provide highest revenue. Methodology also allows to use additional profit to grant lowest number of startup’s per year. Results of both approaches are used to make incident rate calculations by developed empirical formulas, which allow to choose optimal strategy for power plant operation. Obtained formulas can be easily used for most combined heat and power plants. Developed methodologies can be used to optimize the self-consumption of any applications. Methodology for power plant operation planning enhancement is applicable to various scenarios. All developed methodologies were tested on historical data. The results of analysis of ancillary service provision remuneration impact on combined heat and power plant main electrical equipment incident rate and possible income should lead to new researches in this area.


2012 ◽  
Vol 424-425 ◽  
pp. 728-731
Author(s):  
Ren Shu Wang ◽  
Yan Bai ◽  
Yi Xin Xu ◽  
Cheng Yan Xu ◽  
Qiu Ling Li

As the performance of the wireless sensor networks is sensitive to the environment of the application, the analysis of wireless channel is carried out in the workshop of the chemical water treatment in power plant. With the power of noise and received signals sampled, the path-loss exponent γ is derived to establish the model of the wireless channel. To meet the requirement of the performance of wireless communication, such as a given bit error rate (BER), the upper bound of the distance between transmitter and receiver is also presented. At last, the conclusion is given.


2013 ◽  
Vol 726-731 ◽  
pp. 3105-3108
Author(s):  
Shu Hao Huo ◽  
Xue Jing Zheng ◽  
Zhao Qin Ma

The advanced lime treatment system of municipal reclaimed water is applied increasingly extensive in fossil-fueled power plants. Lime metering is one core technique of this system. Lime metering in dry condition and lime metering in wet condition have advantages of metering accurately, no leakiness, no blockage, less investment, full automatic control and etc. These two automatic lime metering systems can meet the operation demand of the advanced lime treatment system.


2021 ◽  
Vol 25 (2) ◽  
pp. 207-219
Author(s):  
A. D. Mekhryakov ◽  
A. N. Kudryashov ◽  
T. V. Koval

The study aims to improve the efficiency of waste utilisation from the coal-fired power industry based on an analysis of the dry-ash output unit operating at the Novo-Irkutsk Combined Heat and Power Plant, JSC “Irkutskenergo”. The unit was tested under various operating conditions of steam generating blocks following the standard methods adopted at the enterprise. The tests showed that the station steam generating block No. 3 (with a steam load of 409.2 t/h and an electrostatic precipitator efficiency of 90.46%) provided an ash supply efficiency of 7.10 t/h. When the ash is supplied from the steam generating block No. 4, operating at a steam load of 421.8 t/h and an electrostatic precipitator efficiency of 94.72%, the ash supply efficiency amounts to 9.19 t/h. Under the simultaneous operation of the steam generating blocks No. 3 and 4 at a steam load of 397.6 and 380.7 t/h, respectively, and an electrostatic precipitator efficiency of 90.46 and 94.72%, respectively, the unit efficiency was 14.23 t/h. As a result, limitations in the unit operation were identified. Thus, the airspeed in the pneumatic ash pipeline during ash transporting was 8.0-8.5 m/s, which facilitated the operation of the dry-ash output unit in a pulsed cycle. It was, therefore, recommended to increase the airspeed by accelerating the flow rate through the jet pump or by using a smaller diameter pipe. The conducted analysis showed that the efficiency of the dry-ash output unit depends mainly on the steam capacity of steam generating blocks, as well as on the flue gas cleaning efficiency in the steam generator electrostatic precipitators. The obtained results were used to determine the technical state, efficiency and reliability of the dry-ash output unit of the Novo-Irkutsk Combined Heat and Power Plant.


Sign in / Sign up

Export Citation Format

Share Document