scholarly journals Spectrum Analysis of Signal in Wolfram Mathematica System

2021 ◽  
Vol 20 (2) ◽  
pp. 173-178
Author(s):  
M. A. Hundzina

The purpose of this paper is a spectrum analysis of signals of various nature, construction of the signal scalogram using Morlet wavelet, modification of the scalogram to obtain a more informative graphic representation of the signal. Spectral analysis of the signal is constructed by means of the Fourier transform. A modification of the graphical representation of the result of the wavelet transform has been developed with the help of  the Mathematica system. For this, a wavelet scalogram has been used as a two-dimensional representation of the original signal. A scale has been introduced on it for the value of the signal amplitude depending on the time and period of its constituent components. This graphical representation allows us to obtain additional information about the dynamic properties of the original signal.  A modification of the representation of the original signal scalogram has been developed for a more complete spectrum analysis (determination of the period of the constituent components). The paper contains an example using a modified scalogram for the analysis of a signal containing two pulses, an audio signal and white noise. The basic wavelet in this case is the Morlet wavelet. A comparison of the scalogram, obtained using the built-in function, and the modified scalogram has been made in the paper. The disadvantage of the first scalogram is the impossibility of assessing the frequency of the signal; its advantage is the ability to assess the localization of the pulse. For a modified scalogram, the advantage is the estimation of the signal periodicity, and the disadvantage is the inaccuracy in determining the range of pulse localization. For spectrum analysis in Mathematica, it is recommended to use a combination of two approaches (using a standard built-in function to determine the localization of the pulse) and a modified scalogram (to determine the periods of the constituent components).

2014 ◽  
Vol 528 ◽  
pp. 210-216
Author(s):  
Zeng Qiang Wang ◽  
Hong Wei Ma ◽  
Mei Hua Tao ◽  
Xu Hui Zhang ◽  
Qing Hua Mao

To solve the problem of faults location for shearer rocker gearbox, the multiple sites vibration signal of faulty rocker gearbox are collected, as well as the Morlet wavelet envelope demodulation is applied to demodulate vibration signal and Fourier transform is used to carry out frequency spectrum analysis of vibration signal. Experimental results show that this method can effectively extract the faults feature frequency from complex vibration signal. The faults location result is consistent with actual faults part. This mean realizes to locate faults accurately. It provides an effective method for mechanical faults diagnosis of shearer.


Author(s):  
Adarsh V Srinivasan ◽  
Mr. N. Saritakumar

In this paper, either a pre-recorded audio or a newly recorded audio is processed and analysed using the LabVIEW Software by National Instruments. All the data such as bitrate, number of channels, frequency, sampling rate of the Audio are analyzed and improvising the signal by a few operations like Amplification, De-Amplification, Inversion and Interlacing of Audio Signals are done. In LabVIEW, there are a few Sub Virtual Instrument’s available for Reading and Writing Audio in .wav formats and using them and array Sub Virtual Instrument, all the processing are done. KEYWORDS: Virtual Instrumentation (VI), LabVIEW (LV), Audio, Processing, audio array.


2021 ◽  
Vol 2021 (6) ◽  
pp. 23-29
Author(s):  
Erik Gasparov ◽  
Lana Gasparova ◽  
Gevorg Markosyan

The purpose of this work is to support dynamic properties of spindle units in grinding machines. For this there are problems under solution for the definition of the origin of the constituents in the spindle unit vibratory activity by means of the linear increase of electric spindle rotation frequency, obtaining and analyzing a vibratory acceleration signal for the possibility to determine a preload. The vibratory acceleration signal was investigated through a spectrum analysis method. A scientific novelty of investigation consists in the substantiation of possibility to determine a preload by means of the spectrum analysis of a vibration acceleration signal at the linear increase of spindle rotation frequency that is at starting. It gives, in its turn, a possibility for the automated estimate of the spindle unit state before cutting beginning. In the experimental way there are obtained temporal realizations of the vibratory acceleration signal at different efforts of the preload. A high-speed grinding motor-spindle is as a basic element of the bench, which was investigated through the methods of testing diagnostics in the operation. In the bench design there were made some alterations. The bench was supplemented with the systems essential to support motor-spindle full operation, in particular: with systems of lubrication, cooling and drive control. There was revealed a large number of harmonics multiple to 50 Hz, which tells of the connection with the frequency of power supply circuit. Their coincidence with the own frequencies of the spindle unit results in the considerable increase of their amplitudes. To increase dynamic quality one should avoid the cases of the coincidence of switching frequencies and circuit harmonics with own frequencies of the electric spindle. It is also necessary to bring a form of power voltage to a pure harmonic oscillation to decrease the impact of a drive electromagnetic field upon dynamic characteristics of the spindle unit.


Author(s):  
Kazuhiro Kondo

This chapter proposes two data-hiding algorithms for stereo audio signals. The first algorithm embeds data into a stereo audio signal by adding data-dependent mutual delays to the host stereo audio signal. The second algorithm adds fixed delay echoes with polarities that are data dependent and amplitudes that are adjusted such that the interchannel correlation matches the original signal. The robustness and the quality of the data-embedded audio will be given and compared for both algorithms. Both algorithms were shown to be fairly robust against common distortions, such as added noise, audio coding, and sample rate conversion. The embedded audio quality was shown to be “fair” to “good” for the first algorithm and “good” to “excellent” for the second algorithm, depending on the input source.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 916 ◽  
Author(s):  
Abarca-Alvarez ◽  
Campos-Sánchez ◽  
Mora-Esteban

The interpretation of opinion and satisfaction surveys based exclusively on statistical analysis often faces difficulties due to the nature of the information and the requirements of the available statistical methods. These difficulties include the concurrence of categorical information with answers based on Likert scales with only a few levels, or the distancing of the necessary heuristic approach of the decision support system (DSS). The artificial neural network used for data analysis, called Kohonen or self-organizing maps (SOM), although rarely used for survey analysis, has been applied in many fields, facilitating the graphical representation and the simple interpretation of high-dimensionality data. This clustering method, based on unsupervised learning, also allows obtaining profiles of respondents without the need to provide additional information for the creation of these clusters. In this work, we propose the identification of profiles using SOM for evaluating opinion surveys. Subsequently, non-parametric chi-square tests were first conducted to contrast whether answer was independent of each profile found, and in the case of statistical significance (p ≤ 0.05), the odds ratio was evaluated as an indicator of the effect size of such dependence. Finally, all results were displayed in an odds and cluster heat map so that they could be easily interpreted and used to make decisions regarding the survey results. The methodology was applied to the analysis of a survey based on forms administered to children (N = 459) about their perception of the urban environment close to their school, obtaining relevant results, facilitating results interpretation, and providing support to the decision-process.


2004 ◽  
Vol 126 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Jing Lin ◽  
Ming J. Zuo ◽  
Ken R. Fyfe

For gears and roller bearings, periodic impulses indicate that there are faults in the components. However, it is difficult to detect the impulses at the early stage of fault because they are rather weak and often immersed in heavy noise. Existing wavelet threshold de-noising methods do not work well because they use orthogonal wavelets, which do not match the impulse very well and do not utilize prior information on the impulse. A new method for wavelet threshold de-noising is proposed in this paper; it not only employs the Morlet wavelet as the basic wavelet for matching the impulse, but also uses the maximum likelihood estimation for thresholding by utilizing prior information on the probability density of the impulse. This method has performed excellently when used to de-noise mechanical vibration signals with a low signal-to-noise ratio.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ştefan Ţălu ◽  
Bandar Astinchap ◽  
Senour Abdolghaderi ◽  
Azizollah Shafiekhani ◽  
Ilya A. Morozov

AbstractThe objective of this study is the experimental investigation of the silver in diamond-like carbon (Ag/DLC) nanocomposite prepared by the co-deposition of radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) and RF-sputtering. Atomic force microscopy (AFM), X-ray diffraction analyses, ultraviolet–visible (UV–visible) spectroscopy measurements were applied to describe the three-dimensional surface texture data in connection with the statistical, and multifractal analyses. Additional information about structure–property relationships in prepared Ag/DLC nanocomposite was studied in detail to allow a better understanding of the surface micromorphology. The performed analysis revealed the studied samples have multifractal properties and can be included in novel algorithms for graphical representation of complex geometrical shapes and implemented in computer simulation algorithms.


2011 ◽  
Vol 462-463 ◽  
pp. 472-477
Author(s):  
Napsiah Binti Ismail ◽  
Shahrum Abdullah ◽  
Mohd Zaki Nuawi ◽  
Zulkifli Mohd Nopiah ◽  
Abdul Lennie

A durability related analysis has been performed using a new statistical-based method, called the Hybrid Integrated Kurtosis-based Algorithm for Z-notch filter (Hybrid I-kaz) Technique. This method provides a two dimensional graphical representation of the signal amplitude and the Hybrid I-kaz coefficient that were used to measure the degree of data scattering. For validation purposes, road tests have been conducted in order to measure the strain and vibration signals on a coil spring. Three road surfaces were used for the road test and data collection purposes. This study used test signals which excited based on three different road surfaces. The 5-mm strain gauge and an accelerometer were fixed on the outer surface of the coil spring for measuring the variable amplitude strain loadings together with the vibration response. The time domain strain and vibration signals were then analysed using global signal statistics and Hybrid I-kaz coefficients. Finally, it was found that the respective coefficients for each signals showed an increment with the total value of strain range and vibration amplitudes.


Sign in / Sign up

Export Citation Format

Share Document