scholarly journals Preparation of polymer thin film using as NH3 gas Sensor

2014 ◽  
Vol 11 (2) ◽  
pp. 598-604
Author(s):  
Baghdad Science Journal

Polyaniline organic Semiconductor polymer thin films have been prepared by oxidative polymerization at room temperature, this polymer was deposited on glass substrate with thickness 900nm, FTIR spectra was tested , the structural,optical and electrical properties were studied through XRD ,UV-Vis ,IR measurements ,the results was appeared that polymer thin film sensing to NH3 gas.

2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


2021 ◽  
Vol 902 ◽  
pp. 65-70
Author(s):  
Samar Aboulhadeed ◽  
Mohsen Ghali ◽  
Mohamad M. Ayad

We report on a development of the structural, optical and electrical properties of poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) conducting polymer thin films. The PEDOT:PSS thin films were deposited by a controlled thin film applicator and their physical properties were found to be effectively modified by isopropanol. The deposited films were investigated by several techniques including XRD, UV–Vis, SPM and Hall-effect. Interestingly, by optimizing the PEDOTS:PSS/ISO volume ratio (v:v), we find that the film charge carriers type can be switched from p to n-type with a high bulk carriers concentration reaching 6×1017 cm-3. Moreover, the film surface roughness becomes smoother and reaching a small value of only 1.9 nm. Such development of the PEDOT:PSS film properties makes it very promising to act as an electron transport layer for different energy applications.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1970 ◽  
Author(s):  
Donghyeon Ryu ◽  
Alfred Mongare

In this study, a flexible strain sensor is devised using corrugated bilayer thin films consisting of poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene)-polystyrene(sulfonate) (PEDOT:PSS). In previous studies, the P3HT-based photoactive non-corrugated thin film was shown to generate direct current (DC) under broadband light, and the generated DC voltage varied with applied tensile strain. Yet, the mechanical resiliency and strain sensing range of the P3HT-based thin film strain sensor were limited due to brittle non-corrugated thin film constituents. To address this issue, it is aimed to design a mechanically resilient strain sensor using corrugated thin film constituents. Buckling is induced to form corrugation in the thin films by applying pre-strain to the substrate, where the thin films are deposited, and releasing the pre-strain afterwards. It is known that corrugated thin film constituents exhibit different optical and electronic properties from non-corrugated ones. Therefore, to design the flexible strain sensor, it was studied to understand how the applied pre-strain and thickness of the PEDOT:PSS conductive thin film affects the optical and electrical properties. In addition, strain effect was investigated on the optical and electrical properties of the corrugated thin film constituents. Finally, flexible strain sensors are fabricated by following the design guideline, which is suggested from the studies on the corrugated thin film constituents, and the DC voltage strain sensing capability of the flexible strain sensors was validated. As a result, the flexible strain sensor exhibited a tensile strain sensing range up to 5% at a frequency up to 15 Hz with a maximum gauge factor ~7.


2013 ◽  
Vol 1577 ◽  
Author(s):  
Aritra Dhar ◽  
T. L. Alford

ABSTRACTHighly transparent composite electrodes made of multilayers of In- and Ga-doped ZnO and Cu (IGZO/Cu/IGZO) thin films (30/3-9/30 nm thick) are deposited onto flexible substrates at room temperature and by using radio frequency magnetron sputtering. The effect of Cu thickness on the electrical and optical properties of the multilayer stack has been studied in accordance with the Cu morphology. The optical and electrical properties of the multilayers are studied with the UV–Vis spectrophotometry, Hall measurement and four point probe analyses. Results are compared with those from a single IGZO layered thin film. The average optical transmittance and sheet resistance both decreases with increase of copper thickness and has been optimized at 6 nm Cu middle layer thickness. The Haacke figure of merit (FOM) has been calculated to evaluate the performance of the films. The highest FOM achieved is 6 x 10-3 Ω-1 for a Cu thickness of 6 nm with a sheet resistance of 12.2 Ω/sq and an average transmittance of 86%. The multilayered thin films are annealed upto 150 °C in vacuum, forming gas and O2 environments and the optical and electrical properties are studied and compared against the as-deposited samples. Thus IGZO/Cu/IGZO multilayer is a promising flexible electrode material for the next-generation flexible optoelectronics.


2013 ◽  
Vol 665 ◽  
pp. 263-266
Author(s):  
M.H. Mangrola ◽  
A.S. Pillai ◽  
B.H. Parmar ◽  
V.G. Joshi

Transparent thin film of pure TiO2and 3% Sr-doped TiO2(Ti0.97Sr0.03O2) were prepared by spin coating technique onto well-cleaned glass substrate. The dielectric behaviour of the films were studied at room temperature for different frequencies. The capacitance of both films were is found to decrease with increasing frequency and at higher frequencies capacitance becomes constant. AC conductivity is found to continuously increase with increase in the frequency. At high frequency it doesnt show any change and remains almost constant.


2013 ◽  
Vol 543 ◽  
pp. 373-376 ◽  
Author(s):  
Nurul Huda Yusoff ◽  
Muhamad Mat Salleh ◽  
Muhammad Yahaya

Room temperature fluorescence gas sensor was developed based on TiO2 nanoparticles coated with porphyrin dye thin films. The porphyrin dye used for this experiment were Iron (III) meso-tetraphenylporphine chloride (IMTPPCl) and Manganase (III) 5,10,15,20 tetra (4-pyridyl)-21H, 23H porphine chloride tetrakis (metachloride). The sensing sensitivity was due to the changes of the emission spectra produce by the thin film when expose to the organic vapors from volatile organic compounds; ethanol, acetone and 2-propanol. Both thin films show good response toward volatile organic vapors. However, TiO2 nanoparticles with porphyrin; IMTPPCl thin film shows pronounced interaction, marked fluorescence spectra and more selective property, hence useful for chemical identification purpose.


Sign in / Sign up

Export Citation Format

Share Document