scholarly journals Using an Auger electron spectrometer to measure electron beam induced X-ray excited photoelectrons from thin films on Al and Mg substrates.

1996 ◽  
Vol 45 (9) ◽  
pp. 873-877
Author(s):  
Shuyo YAMAMOTO ◽  
Hideyuki MATSUTA ◽  
Kichinosuke HIROKAWA
1997 ◽  
Vol 482 ◽  
Author(s):  
Yu. V. Melnik ◽  
A. E. Nikolaev ◽  
S. I. Stepanov ◽  
A. S. Zubrilov ◽  
I. P. Nikitina ◽  
...  

AbstractGaN, AIN and AIGaN layers were grown by hydride vapor phase epitaxy. 6H-SiC wafers were used as substrates. Properties of AIN/GaN and AIGaN/GaN structures were investigated. AIGaN growth rate was about 1 μm/min. The thickness of the AIGaN layers ranged from 0.5 to 5 μm. The AIN concentration in AIGaN layers was varied from 9 to 67 mol. %. Samples were characterised by electron beam micro analysis, Auger electron spectroscopy, X-ray diffraction and cathodoluminescence.Electrical measurements performed on AIGaN/GaN/SiC samples indicated that undoped AIGaN layers are conducting at least up to 50 mol. % of AIN.


Tribology ◽  
2005 ◽  
Author(s):  
Jianqiang Hu ◽  
Zhanhe Du ◽  
Junbing Yao

An cadmium dialkyl-dithiophosphyl-dithiophosphate additive was synthesized. A four-ball tester was used to evaluate the tribological performance of the additive in mineral base oil under different loads, compared with commercial additives. The results show that it exhibits excellent antiwear and load-carrying capacities and better than these additives. The surface analytical tools such as Auger Electron Spectrometer (AES), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) were used to investigate the topography, the contents and the depth profile of some typical elements on the rubbing surface of worn scar. Smooth and light topography of worn scar further confirms that the additive showed good antiwear capacities, the results of Auger electron spectrometer and energy dispersive X-ray analysis indicate that tribochemically protective films consists of cadmium compouds, sulfides, sulphates and phosphates were formed on the rubbing surface, which contribute to improving the tribological properties of lubricants. Particularly, the results from depth profile indicate that a large amounts of cadmium are rich in outer layer of surface, which play an important role in improving antiwear properties of oils. Finally, the antiwear mechanism of the additive were proposed.


1991 ◽  
Vol 05 (18) ◽  
pp. 1203-1211 ◽  
Author(s):  
C. ATTANASIO ◽  
L. MARITATO ◽  
A. NIGRO ◽  
S. PRISHEPA ◽  
R. SCAFURO

BSCCO thin films with T c (R = 0) higher than 80 K have been routinely prepared using a simple and reliable technique in which we completely electron beam evaporated weighted amounts of bulk pellets. The films were grown on MgO single crystal (100) substrates and showed, after an ex-situ annealing at high temperatures (840–880° C) for several hours, a strong preferential orientation with the c-axis perpendicular to the plane of the substrate. The films were characterized by Θ − 2Θ X-ray diffraction and EDS analysis and by paraconductivity and critical current measurements.


1987 ◽  
Vol 01 (02) ◽  
pp. 571-574
Author(s):  
Jia-qi Zheng ◽  
Guo-guang Zheng ◽  
Dong-qi Li ◽  
Wei Wang ◽  
Jin-min Xue ◽  
...  

Y-Ba-Cu-O thin films are deposited onto severval kinds of substrates by electron beam evaporating in a high vacuum system. After the heat treatment at 850–890°c for 1hr the Y-Ba-Cu-O films on the BaF2 substrates show superconducting behaviors with the midpoint Tc around 87K and zero resistance temperature at 77K. The composition and stucture analysis of these films have been studied by AES, XRFS and x-ray diffraction.


1995 ◽  
Vol 10 (1) ◽  
pp. 26-33 ◽  
Author(s):  
L.M. Porter ◽  
R.F. Davis ◽  
J.S. Bow ◽  
M.J. Kim ◽  
R.W. Carpenter

Thin films (4–1000 Å) of Co were deposited onto n-type 6H-SiC(0001) wafers by UHV electron beam evaporation. The chemistry, microstructure, and electrical properties were determined using x-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and I-V and C-V measurements, respectively. The as-deposited contacts exhibited excellent rectifying behavior with low ideality factors and leakage currents of n < 1.06 and 2.0 × 10−8 A/cm2 at −10 V, respectively. During annealing at 1000 °C for 2 min, significant reaction occurred resulting in the formation of CoSi and graphite. These annealed contacts exhibited ohmic-like character, which is believed to be due to defects created in the interface region.


2000 ◽  
Vol 648 ◽  
Author(s):  
Chichang Zhang ◽  
Aris Christou

AbstractShape memory alloy TiNi thin films on GaAs have been investigated. A series of TiNi compositions were electron beam deposited on GaAs initially as thin multilayers of Ti and Ni. The intermetallic phase of TiNi was formed by annealing and complete intermixing of the multilayers at 370oC. The intermetallic phases were investigated with X-ray diffraction techniques. The annealing kinetics and resistivity investigations were carried out in order to minimize the sheet resistance of the intermetallic phase. TiNi Schottky barriers on GaAs have been fabricated and their performance will be reported. Additional investigations on surface morphology using the energy dispersive spectroscopy as well as TEM investigations show the correlation between microstructure, intermetallic phase formation and sheet resistance.


2007 ◽  
Vol 21 (26) ◽  
pp. 4561-4574 ◽  
Author(s):  
JIANWU YAN ◽  
JICHENG ZHOU

By controlling the sputtering power, rotational speed of the substrate and sputtering time, Ni – Cr thin films with appropriate composition were fabricated by double-target magnetron co-sputtering techniques. The homogeneity and oxidation of Ni – Cr thin film has been studied by Auger electron spectroscopy (AES). The structures of Ni – Cr thin films were determined by an X-ray diffractometer (XRD). The oxidation and the resistance stability of the Ni – Cr thin film after rapid thermal process (RTP) have been studied. The relations between TCR and RTP techniques of Ni – Cr thin films were discussed.


Sign in / Sign up

Export Citation Format

Share Document