Automated Mud Skid Holds Promise of Safety, Efficiency Improvements With Real-Time Fluid Monitoring

2021 ◽  
Vol 73 (06) ◽  
pp. 31-33
Author(s):  
Blake Wright

As industry buzzwords go, “automation” has spent its time in oilfield vernacular climbing the ranks of widely used terms. It now resides as one of the go-to designations for signs of advancement in any number of disciplines. Its use has been tied most frequently with drilling operations as contractors look to keep employees out of harm’s way via a robotic take-over of most motion-intensive jobs on the rig’s drill floor—basically anything that grips, clamps, or spins. More recently, the term has moved away from the drill floor and into other well construction operations allowing for things such as remote, real-time measurements without the need for boots on the ground. For areas like west Texas and the Permian Basin shales, having the option for remote readouts and a component of automation that can allow for corrective actions should the need arise can go a long way in terms of safety and efficiency gains as well as better manpower application. Unsurprisingly, the area has become a solid testing ground for new, expanding efforts in automation. With dreams of new drilling-fluid-monitoring automation, Eric van Oort, a professor at The University of Texas at Austin and former Shell research scientist, and select students came up with a new way to automatically measure mud parameters such as viscosity without the use of a traditional viscometer. “The fact that we still use manual measurements, some of them now 90 years old, is quite puzzling in this day and age,” van Oort said. “The Marsh funnel, for instance, was introduced in the 1930s, and other mud tests go back to the 1950s and 1960s. These API measurements have served us well, but the question is, can you do something more now with modern measurement techniques and sensors? So, I started working on new ways of measuring the viscosity and density, and then later fluid loss and even solids and salinity in muds. That proved to be all very successful and promising.” Construction of a mud skid to house the equipment and sensors needed to conduct these tests in real time was the next step in the evolution of van Oort’s concept. That initial skid was a cannibalized and reworked version of a unit that was employed on Shell’s Rig 1, which the supermajor built for its in-house rig-automation research based in Pennsylvania. This early mud skid, considered the prototype of van Oort’s design, was abandoned before it was properly tested. “We generated quite a bit of IP [intellectual property], my students and I at UT,” he said. “The Shell skid hadn’t seen a significant amount of service, and it had some nice components that we could reuse. We took that skid apart and reconfigured it and put it out in the field with Pioneer Natural Resources for a set of field trials in the Permian. Those went well.” The field trial results were shared in a paper presented at the 2019 Unconventional Resources Technology Conference (URTEC 2019-964). The paper concluded that the pipe viscometer employed by the skid allows for the characterization of additional rheology parameters, which cannot be obtained with Couette-type viscometers, such as the critical Reynolds number, characterizing the transition from laminar into turbulent flow, and the friction factor in the turbulent flow regime.

2021 ◽  
Author(s):  
Kriti Singh ◽  
Sai Yalamarty ◽  
Curtis Cheatham ◽  
Khoa Tran ◽  
Greg McDonald

Abstract This paper is a follow up to the URTeC (2019-343) publication where the training of a Machine Learning (ML) model to predict rate of penetration (ROP) is described. The ML model gathers recent drilling parameters and approximates drilling conditions downhole to predict ROP. In real time, the model is run through an optimization sweep by adjusting parameters which can be controlled by the driller. The optimal drilling parameters and modeled ROP are then displayed for the driller to utilize. The ML model was successfully deployed and tested in real time in collaboration with leading shale operators in the Permian Basin. The testing phase was split in two parts, preliminary field tests and trials of the end-product. The key learnings from preliminary field tests were used to develop an integrated driller's dashboard with optimal drilling parameters recommendations and situational awareness tools for high dysfunction and procedural compliance which was used for designed trials. The results of field trials are discussed where subject well ROP was improved between 19-33% when comparing against observation/control footage. The overall ROP on subject wells was also compared against offset wells with similar target formations, BHAs, and wellbore trajectories. In those comparisons against qualified offsets, ROP was improved by as little as 5% and as much as 33%. In addition to comparing ROP performance, results from post-run data analysis are also presented. Detailed drilling data analytics were performed to check if using the recommendations during the trial caused any detrimental effects such as divergence in directional trends or high lateral or axial vibrations. The results from this analysis indicate that the measured downhole axial and lateral vibrations were in the safe zone. Also, no significant deviations in rotary trends were observed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Notake ◽  
T. Iyoda ◽  
T. Arikawa ◽  
K. Tanaka ◽  
C. Otani ◽  
...  

AbstractThe capability for actual measurements—not just simulations—of the dynamical behavior of THz electromagnetic waves, including interactions with prevalent 3D objects, has become increasingly important not only for developments of various THz devices, but also for reliable evaluation of electromagnetic compatibility. We have obtained real-time visualizations of the spatial evolution of THz electromagnetic waves interacting with a single metal micro-helix. After the micro-helix is stimulated by a broadband pico-second pulse of THz electromagnetic waves, two types of anisotropic re-emissions can occur following overall inductive current oscillations in the micro-helix. They propagate in orthogonally crossed directions with different THz frequency spectra. This unique radiative feature can be very useful for the development of a smart antenna with broadband multiplexing/demultiplexing ability and directional adaptivity. In this way, we have demonstrated that our advanced measurement techniques can lead to the development of novel functional THz devices.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3592
Author(s):  
Naipeng Liu ◽  
Di Zhang ◽  
Hui Gao ◽  
Yule Hu ◽  
Longchen Duan

The accurate and frequent measurement of the drilling fluid’s rheological properties is essential for proper hydraulic management. It is also important for intelligent drilling, providing drilling fluid data to establish the optimization model of the rate of penetration. Appropriate drilling fluid properties can improve drilling efficiency and prevent accidents. However, the drilling fluid properties are mainly measured in the laboratory. This hinders the real-time optimization of drilling fluid performance and the decision-making process. If the drilling fluid’s properties cannot be detected and the decision-making process does not respond in time, the rate of penetration will slow, potentially causing accidents and serious economic losses. Therefore, it is important to measure the drilling fluid’s properties for drilling engineering in real time. This paper summarizes the real-time measurement methods for rheological properties. The main methods include the following four types: an online rotational Couette viscometer, pipe viscometer, mathematical and physical model or artificial intelligence model based on a Marsh funnel, and acoustic technology. This paper elaborates on the principle, advantages, limitations, and usage of each method. It prospects the real-time measurement of drilling fluid rheological properties and promotes the development of the real-time measurement of drilling rheological properties.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5857
Author(s):  
Brandy J. Johnson ◽  
Anthony P. Malanoski ◽  
Jeffrey S. Erickson

This review describes an ongoing effort intended to develop wireless sensor networks for real-time monitoring of airborne targets across a broad area. The goal is to apply the spectrophotometric characteristics of porphyrins and metalloporphyrins in a colorimetric array for detection and discrimination of changes in the chemical composition of environmental air samples. The work includes hardware, software, and firmware design as well as development of algorithms for identification of event occurrence and discrimination of targets. Here, we describe the prototype devices and algorithms related to this effort as well as work directed at selection of indicator arrays for use with the system. Finally, we review the field trials completed with the prototype devices and discuss the outlook for further development.


1993 ◽  
Vol 1993 (82) ◽  
pp. 89-104
Author(s):  
V. Ray Cardozier

1969 ◽  
Vol 9 (04) ◽  
pp. 403-411 ◽  
Author(s):  
B.K. Sinha ◽  
Harvey T. Kennedy

Abstract Recommendations are made for obtaining consistent and reproducible test data on drilling fluids having identical composition. Previously, such a procedure has been difficult to accomplish even when the fluids were mixed in similar equipment. A survey of work in this area indicates that previous methods have been unsatisfactory because previous methods have been unsatisfactory because (1) the muds are extremely sensitive to the duration and violence of agitation during a normal mixing routine, and (2) gelling of the muds occurs before the properties can reach constant values. This gelling is caused by water evaporation resulting from the increase in temperature associated with the agitation. The work shows that these problems largely can be overcome by (1) agitating the constituents of the drilling fluid more vigorously, (2) maintaining a fairly constant temperature, and(3) Protecting the fluid from evaporation. When these steps are followed, the fluid properties approach asymptotic values that do not change by prolonged or accelerated agitation or by aging for a month. The time required to reach asymptotic values or a stabilized state is from 2 to 6 hours and is a function of the mud composition. Introduction Preparation of drilling fluids in the laboratory to determine their suitability to meet specific drilling requirements or to serve as a base fluid to evaluate the effectiveness of thinners, dispersants or other additives normally begins with combining measured quantities of the constituents and stirring them for a short time in a low-speed mixer. This is done to obtain a uniform mixture and to hydrate clays. Then the fluid is further agitated in a higher-speed device (Hamilton Beach mixer or Waring blender) to disperse more thoroughly and clay particles The biggest obstacle in the laboratory investigation of drilling fluids has been the lack of a method of producing a mixture by which reproducible results of the measured properties could be obtained. Numerous investigators have encountered this difficulty. Prior to 1929, density was the only property of mud that customarily was measured. The use of Wyoming bentonite on a large scale after 1929 was mainly responsible for the development of more elaborate testing procedures and for the application of the principles of colloid chemistry to the drilling fluids. Ambrose and Loomis in 1931 were among the first to recognize the plastic flow characteristics of drilling fluids, although Bingham in 1916 had observed The same phenomenon with dilute clay suspensions. Marsh introduced the Marsh funnel for field testing in 1931. By this time, non-Newtonian characteristics of drilling fluids were established. The Stormer and MacMichael viscometers were used to study the rheological properties of the fluids. In the 1930's and early 1940's, the work conducted by several investigators contributed toward a better understanding of drilling fluids. In the mid 1930's, fluid-loss and the associated mud-cake-forming properties of drilling fluids were recognized as important to the behavior of these fluids. The other properties of drilling fluids, including gel strength, pH, and sand content soon were recognized. In 1937, API published its first recommended procedure for test methods. Since that time, these procedures have been revised periodically. The latest edition, RP-13B, was published in 1961 However, in spite of the recognized need for a method of mixing that provides drilling fluids with stabilized properties, no such method previously has been described. SPEJ P. 403


2015 ◽  
Author(s):  
Yuliya B. Lind ◽  
Aleksei V. Samsykin ◽  
Sergei R. Galeev

2021 ◽  
Author(s):  
Xiu-Heng Zhang ◽  
Heng Zhang ◽  
Zhen Li ◽  
Gui-Bin Bian

Abstract Three-dimensional force perception is critically important in the enhancement of human force perception to minimize brain injuries resulting from excessive forces applied by surgical instruments in robot-assisted brain tumor resection. And surgeons are not responsive enough to interpret tool-tissue interaction forces. In previous studies, various force measurement techniques have been published. In neurosurgical scenarios, there are still some drawbacks to these presented approaches to forces perception. Because of the narrow, and slim configuration of bipolar forceps, three-dimensional contact forces on forceps tips is not easy to be traced in real-time. Five fundamental acts of handling bipolar forceps are poking, opposing, pressing, opening, and closing. The first three acts independently correspond to the axial force of z, x, y. So, in this paper, typical interactions between bipolar forceps and brain tissues have been analyzed. A three-dimensional force perception technique to collect force data on bipolar forceps tips by installing three Fiber Bragg Grating Sensors (FBGs) on each prong of bipolar forceps in real-time is proposed. Experiments using a tele-neurosurgical robot were performed on an in-vitro pig brain. In the experiments, three-dimensional forces were tracked in real-time. It is possible to experience forces at a minimum of 0.01 N. The three-dimensional force perception range is 0-4 N. The calibrating resolution on x, y, and z, is 0.01, 0.03, 0.1 N, separately. According to our observation, the measurement accuracy precision is over 95%.


Sign in / Sign up

Export Citation Format

Share Document