Experimental Tests of a Method for Drilling With Explosives

1965 ◽  
Vol 5 (02) ◽  
pp. 153-159
Author(s):  
L.H. Robinson

Abstract TEST TEST A proposed method of drilling utilizes sequential detonation of two types of explosive charges delivered to the hole by a conventional drilling fluid through pipe. A shaped charge first produces a long thin hole. A second charge, called a gauging charge, is pumped into the thin hole, explodes, and enlarges it to full gauge. In one suggested configuration, the explosives are contained in cylindrical capsules 4- to 5-ft long. A drilling head is positioned 2- to 3-ft off bottom. When a capsule is pumped to the bottom of the hole and stops, pressure inside the drill pipe increases and differential pressure detonates the explosive. Primacord along the length of the capsule disintegrates the capsule. The debris circulates out of the hole with the drilling fluid. The gauging-charge action was examined using 2-ft cubes of Berea sandstone. The sandstone (18 per cent porosity) was vacuum-saturated with water and surrounded by concrete. To prevent reflected tensile pulses, the acoustical impedance of the concrete matched that of the sandstone. A 750-psig pressure was applied to a drilling fluid within a shaped-charge-formed hole before detonating the gauging charge. In these tests, 190 gm of rock were removed for each gram of explosive detonated. A similar series of experiments on low-porosity (0.40 per cent) metamorphic limestone provided a more rigorous test. Extensive fracturing from the gauging-charge action prevented an estimate of the volume of the expanded hole. The diameter of the hole was irregular, ranging from about 2 to 4 in-, or about fivefold larger than the hole created by the shaped charge. INTRODUCTION In the past, explosives have found a varied but somewhat limited use in the oil field. An early well stimulation technique, still in use today, involves shooting nitroglycerin to enlarge the borehole and to increase matrix permeability near the wellbore. Bullets and jets are now the conventional method of perforating casing and tubing. Detonations are frequently used to "back off" or "shoot off" stuck pipe and, of course, seismographic work has long depended on explosive-generated pulses to find attractive earth structures. Efforts to use explosives in drilling operations have received limited examinations1 which, in one respect, is surprising because explosives offer one way to transmit large amounts of energy directly to the bottom of the hole. Recently, Ostrovskii1 described a Russian method of drilling with explosives that utilizes small capsules containing explosives which are pumped into the mud stream to the bottom of a borehole. As the capsules leave the end of the drill pipe, a detonation mechanism is armed. Impact detonates the explosive- In another configuration, two liquids (an oxidizing agent and fuel) in the capsule are separated by a frangible membrane. Separately, the liquids are nonexplosive. Near the bottom of the drill pipe, the capsule passes through a narrow constriction which ruptures the membrane. The mixing of the liquids produces an explosive. Impact is again used to detonate the explosive. About the time Ostrovskii was developing his method, Humble Oil & Refining Co. was independently doing research on another explosive drilling concept based on the sequential detonation of two types of explosive charges. The proposed technique consisted of alternately pumping a shaped charge and then a "gauging charge" down a well. The shaped charge should drill a long, tapered hole, and the gauging charge should expand it to full gauge. This paper presents the visualized drilling concept and gives results of laboratory work which showed that sequential firing of charges can form hole at an attractive charge-to-rock removal ratio. An important finding was that increased environmental pressure, which is to be expected in wells, increases rock removal efficiency of the gauging charge.

2021 ◽  
Author(s):  
Manchukarn Naknaka ◽  
Trinh Dinh Phu ◽  
Khamawat Siritheerasas ◽  
Pattarapong Prasongtham ◽  
Feras Abu-Jafar ◽  
...  

Abstract The objective of this research is to describe the methodology used to drill the most extended reach well (ERD) in the Gulf of Thailand. The Jasmine field is a mature, sophisticated, oil field with many shallow reservoir targets that require a minimum 10,000ft horizontal displacement. As such, the main challenges faced, and the novel technology applied is described in detail by this research. The research is an example of successfully drilling a challenging well, safely and efficiently. The Jasmine C – Well X, is a 3-string design structure with an 11-3/4in top hole, an 8-1/2in intermediate section, and a 6-1/8in reservoir horizontal section. Well X was constructed by utilizing an existing platform well slot. The challenge involved drilling from the top hole to the kickoff point and directional drilling away from the casing stump of the existing well to avoid any collision with nearby wells emanating from the Jasmine C platform. The 8-1/2in hole section was the most important segment as it had to reach the landing point precisely in order to start the 6-1/8in section for GeoSteering in the reservoir section. The 8-1/2in section encountered three challenges that could affect drilling efficiency.Directional Drilling – The complexities of the well profile:The method involved making well inclination (INC) lower than 82deg in the tangent interval in order to reduce the well's tortuosity as much as possible.Hole condition – Hole cleaning and fluid losses control:The method involved the use of Low Toxicity Oil Based Mud (LTOBM) CaCO3 system, the chemical elements in the drilling fluid system could help to seal the high permeable zones.Drilling Engineering – Torque and Drag (T&D) control:The method taked into account the 7in casing run to the bottom of the hole, which the casing driven system did not allow for rotation The well was completed successfully without any additional trips. A Total Depth (TD) was of 13,052ftMD was achieved to reach reservoirs at 3,260ft TVDSS. It was therefore announced in 2019 as a new ERD record for Mubadala Thailand (ERD ratio = 3.26, Directional Difficulty Index (DDI) = 6.95). The top hole and 9-5/8in casing were set in the right depth. An 8-1/2in section was accomplished on the planned trajectory with an average on bottom Rate of Penetration (ROP) at 319 ft/hr. The 6-1/8in section was drilled by geosteering to achieve sub-surface objectives. A total of 2,143ft intervals inside the reservoir was successfully achieved. While drilling, lost circulation events occured, but the mud system was conditioned with Lost Circulation Materials (LCM). Therefore, drilling performance was unaffected. Moreover, the Bit's Total Flow Area (TFA) and Rotary steering systems (RSS) flow restrictor was configured to allow directional drilling at a very low Flow rate of 470gpm. Addition, 30 joints of 5-1/2in Heavy Weight Drill Pipe (HWDP) and 39 joints of 4in HWDP were added into the Bottom Hole Assembly (BHA) to transfer string weight to drill bitsand drill to well TD. As complexities of the well profile were fully aware, the casing was runned and minimized the open hole friction until the casing was deployed successfully. In the Gulf of Thailand, drilling the longest ERD well in a shallow True Vertical Depth (TVD) was clearly groundbreaking and entailed the successful management of the key operational challenges related to identification, job planning, design, technology selection, and implementation. This research illuminates the challenges and technical solutions of long ERD well and serves as an example of what can be achieved in the region and globally.


2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure


2021 ◽  
Author(s):  
Thad Nosar ◽  
Pooya Khodaparast ◽  
Wei Zhang ◽  
Amin Mehrabian

Abstract Equivalent circulation density of the fluid circulation system in drilling rigs is determined by the frictional pressure losses in the wellbore annulus. Flow loop experiments are commonly used to simulate the annular wellbore hydraulics in the laboratory. However, proper scaling of the experiment design parameters including the drill pipe rotation and eccentricity has been a weak link in the literature. Our study uses the similarity laws and dimensional analysis to obtain a complete set of scaling formulae that would relate the pressure loss gradients of annular flows at the laboratory and wellbore scales while considering the effects of inner pipe rotation and eccentricity. Dimensional analysis is conducted for commonly encountered types of drilling fluid rheology, namely, Newtonian, power-law, and yield power-law. Appropriate dimensionless groups of the involved variables are developed to characterize fluid flow in an eccentric annulus with a rotating inner pipe. Characteristic shear strain rate at the pipe walls is obtained from the characteristic velocity and length scale of the considered annular flow. The relation between lab-scale and wellbore scale variables are obtained by imposing the geometric, kinematic, and dynamic similarities between the laboratory flow loop and wellbore annular flows. The outcomes of the considered scaling scheme is expressed in terms of closed-form formulae that would determine the flow rate and inner pipe rotation speed of the laboratory experiments in terms of the wellbore flow rate and drill pipe rotation speed, as well as other parameters of the problem, in such a way that the resulting Fanning friction factors of the laboratory and wellbore-scale annular flows become identical. Findings suggest that the appropriate value for lab flow rate and pipe rotation speed are linearly related to those of the field condition for all fluid types. The length ratio, density ratio, consistency index ratio, and power index determine the proportionality constant. Attaining complete similarity between the similitude and wellbore-scale annular flow may require the fluid rheology of the lab experiments to be different from the drilling fluid. The expressions of lab flow rate and rotational speed for the yield power-law fluid are identical to those of the power-law fluid case, provided that the yield stress of the lab fluid is constrained to a proper value.


CORROSION ◽  
1990 ◽  
Vol 46 (9) ◽  
pp. 778-782 ◽  
Author(s):  
M. A. Al-Marhoun ◽  
S. S. Rahman
Keyword(s):  

2019 ◽  
Vol 196 ◽  
pp. 00011 ◽  
Author(s):  
Yaroslav Ignatenko ◽  
Andrey Gavrilov ◽  
Oleg Bocharov ◽  
Roland May

The current study is devoted to simulating cuttings transport by drilling fluid through a horizontal section of borehole with an annular cross section. Drill pipe rotates in fixed eccentric position. Steady-state flow is considered. Cuttings are rigid spheres with equal diameters. The carrying fluid is drilling mud with Herschel-Bulkley rheology. Suspension rheology depends on local shear rate and particles concentration. Continuous mixture model with algebraic equation for particles slipping velocity is used. Two hydrodynamic regimes are considered: axial flow without drill pipe rotation and with drill pipe rotation. In the case of axial flow was shown that increasing of power index n and consistency factor k increases pressure gradient and decreases cuttings concentration. Increasing of yield stress leads to increasing of pressure gradient and cuttings concentration. Cuttings concentration achieves constant value for high yield stress and not depends on it. Rotation of the drill pipe significantly changes the flow structure: pressure loss occurs and particles concentration decreases in the cross section. Two basic regimes of rotational flow are observed: domination of primary vortex around drill pipe and domination secondary vorticity structures. Transition between regimes leads to significant changes of flow integral parameters.


2011 ◽  
Vol 335-336 ◽  
pp. 491-497 ◽  
Author(s):  
Ping Quan Wang ◽  
Zong Xue Yu ◽  
Da Yin ◽  
Hong Jun Liang ◽  
Kun Bin Yang

In order to take exploratory well, production well ( development well), and reservoir p-retection into account. Multi-functional treatment agent used in drilling fluid and completion flui-d which called MFA-1 has been successfully developed by the equilibrium principle of dispersion and accumulation. The result shows that MFA-1 is fluorescenceless and low (no)toxicity. Also, it has many perfect properties such as filtration reducing, lubrication, anti-collapsing, plugging, re-servoir protection, strong anti-temperature (>150°C) ,strong anti-salt,ect. Its whole effect is bett-er than sulphonating asphalts HL-Ⅱ and SAS.So MFA-1 is a good succedaneum of sulphonating asphalts.In more than 20 wells of Tarim Oilfield,drilling fluid and completion fluid which prepared with MFA-1 has been successfully used to solve many problems. Such as drill pipe sticking w-hile testing and the underground complex incidents,ect. As a result,it takes good social benefits a-nd good economic benefits.


1990 ◽  
Vol 30 (1) ◽  
pp. 310
Author(s):  
D. Lasserre

A large proportion of the North West Shelf development gas wells are long reach (greater than 3500 m) and highly deviated. For reservoir description and management purposes, comprehensive formation evaluation needs to be carried out in these wells.Considerable difficulties have been encountered with electric log data acquisition due to friction and borehole conditions in these long, highly-deviated wells. As a result, new techniques to log the zones of interest were introduced. A system using the drill pipe to transport the downhole logging tools has been successfully used.Also, low-toxicity oil-based mud (LTM) was introduced in order to ease drilling problems and borehole conditions. However, owing to the non-conductive nature of the oil-based drilling fluid, improvements were required in the vertical resolution of the resistivity measurements and the estimation of the formation porosity.A computer program using a forward deconvolution technique recently developed by Shell's research laboratory in Holland has been successfully applied to enhance the vertical resolution of the resistivity log reading.The large range of uncertainty on the pore volume has been reduced to reasonable level by calibrating the porosity log data against core data obtained in a well drilled with LTM.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Mingzheng Yang ◽  
Yuanhang Chen

Abstract Recent research studies have indicated that filtercakes play a role in preventing fracture initiation, blocking pre-existing narrow fractures, and isolating drilling-induced fractures at the initiation stage. The ability of the filtercakes to effectively strengthen the wellbore expectedly depends on its capability in maintaining its integrity and providing the barrier to isolate pressure and fluid transmission between the wellbore and fractures. In this research, a modified permeability apparatus was used to evaluate the quality of drilling fluid filtercakes. A new criterion defined as filtercake rupture resistance is proposed to characterize the filtercake quality regarding its ability to sustain pressure over an open fracture. Experimental tests were conducted to investigate how filtercake thickness and filtercake yield strength affect the rupture resistance. The mechanism of filtercake in sealing the narrow fractures is explored, and it was observed that solid's plugging/bridging plays the vital role in this mechanism. A thicker and stronger filtercake also contributes to a faster establishment of complete fracture seal. The results of this research can be utilized as a reference that guides the optimization of drilling fluid for continuously strengthening the wellbore.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2656 ◽  
Author(s):  
Yunfeng Liu ◽  
Zhengsong Qiu ◽  
Hanyi Zhong ◽  
Zhen Nie ◽  
Jia Li ◽  
...  

Since 2007, heterogeneous, high-viscosity active bituminous formations have often occurred during the drilling process in Yadavaran oilfield (Iran), Halfaya oilfield (Iraq), and tar sands (Canada). The formation of bitumen exhibits plastic and creep properties, and its adhesion is strong, so drilling accidents are easily caused, such as adhering vibrating screen, drill pipe sticking, lost circulation, and even well abandonment. These complex problems cause huge economic losses. Solvents used to dissolve bitumen are a feasible technology to remove bitumen effectively. In order to solve this problem, we used crude bitumen samples from Halfaya oilfield to study the relation between the bitumen component and different solvents. In this study, the temperature, crude bitumen sample to solvent ratio, stirring rate, stirring time, and ultrasound time on bitumen recovery by toluene were investigated by a single factor experiment. The optimum process parameter for bitumen recovery was obtained. Toluene, n-heptane, tetrahydrofuran, cyclohexane, cyclopentane, ethyl acetate, and n-pentane were chosen as the solvents for single solvent extraction and composite solvent extraction. The bitumen recovery increased significantly with the use of a composite solvent compared to a single solvent. The composite solvent ratio was 1:1. The highest bitumen recovery was 98.9 wt% by toluene/cyclohexane composite solvent. The SARA (saturates, aromatics, resins, and asphaltenes) components of the bitumen were analyzed. The toluene showed the highest asphaltene content, while the n-alkanes showed the lowest asphaltene content. The higher the asphaltene content, the higher the bitumen recovery. The composite solvent obtained the highest asphaltene content and bitumen recovery. The viscosity of bitumen extraction by different solvents was measured. The lower the bitumen viscosity, the higher the bitumen recovery. The element analysis indicated the solvent’s ability to extract bitumen colloids with the C/H ratio. This study provides a reliable theoretical basis for the subsequent adoption of effective anti-bitumen polluted drilling fluid additives.


Sign in / Sign up

Export Citation Format

Share Document