Magnitude and Detailed Structure of Residual Oil Saturation

1983 ◽  
Vol 23 (02) ◽  
pp. 311-326 ◽  
Author(s):  
Ioannis Chatzis ◽  
Norman R. Morrow ◽  
Hau T. Lim

Abstract Experimental results are presented that demonstrate the effect on residual oil, under water-wet conditions, of particle size, particle-size distribution, macroscopic particle size, particle-size distribution, macroscopic and microscopic heterogeneities, microscopic dimensions such as ratio of pore-body to pore-throat size, and pore-to-pore coordination number. Experiments were pore-to-pore coordination number. Experiments were performed in random packs of equal spheres, heterogeneous performed in random packs of equal spheres, heterogeneous packs of spheres with microscopic and macroscopic packs of spheres with microscopic and macroscopic heterogeneities, two-dimensional (2D) capillary networks having various pore geometries, and Berea sandstone. Detailed information on residual oil structure is presented, including blob-size distributions of residual presented, including blob-size distributions of residual oil. Major conclusions areresidual saturations are independent of absolute pore size, per se, in systems of similar pore geometry;well-mixed two-component aggregates of spheres gave virtually the same residual saturations as random packings of equal spheres;clusters of large pores accessible through small pores will retain oil;high aspect ratios tend to cause entrapment of oil as a large number of relatively small blobs, each held in single pores; andthe role of pore-to-pore coordination number is generally secondary; pore-to-pore coordination number is generally secondary; hence, correlations that have been proposed between residual oil and coordination number are unreliable. Introduction In recent years, there has been increased interest in the factors that determine the magnitude of residual oil and its microscopic distribution. Residual oil remaining in the swept zone of a waterflood is often taken as the target oil for enhanced recovery processes. Oil saturations remaining in these zones typically can occupy 15 to 35% of the pore space, but values outside this range are often measured. For the reservoir, it can be expected that the pore structure, the initial water content, and the superimposed effects of wettability determine recovery behavior and residual oil distribution under normal waterflood conditions. Salathiel has presented examples of the manner in which pore geometry, wettability, and volume throughput of floodwater can interact to affect oil recovery characteristics and final oil saturation. The likely complexity of trapping phenomena is indicated by the work of Wardlaw and Cassan, who investigated possible correlations between residual oil and 27 petrophysical parameters. Rocks with similar macroscopic properties often differed markedly in their residual oil saturations, and no significant correlation was observed between displacement efficiency and permeability. A tendency for residual nonwetting-phase permeability. A tendency for residual nonwetting-phase saturations to increase as porosity decreased was noted. This was related to a strong relationship between trapping and aspect ratio (ratio of pore-body to pore-throat size). A theory of residual oil trapping has been proposed by Larson et al. that provides an alternative explanation of the relationship between residual oil and porosity. It was reasoned that the trapped nonwetting-phase saturation will correspond reasonably well to the percolation threshold i.e., to the oil saturation at which oil continuity through the pore space is lost. SPEJ p. 311

1991 ◽  
Vol 113 (4) ◽  
pp. 402-411 ◽  
Author(s):  
T. J. Labus ◽  
K. F. Neusen ◽  
D. G. Alberts ◽  
T. J. Gores

A basic investigation of the factors which influence the abrasive jet mixing process was conducted. Particle size analysis was performed on abrasive samples for the “as-received” condition, at the exit of the mixing tube, and after cutting a target material. Grit size distributions were obtained through sieve analysis for both water and air collectors. Two different mixing chamber geometries were evaluated, as well as the effects of pressure, abrasive feed rate, cutting speed, and target material properties on particle size distributions. An analysis of the particle size distribution shows that the main particle breakdown is from 180 microns directly to 63 microns or less, for a nominal 80 grit garnet. This selective breakdown occurs during the cutting process, but not during the mixing process.


1982 ◽  
Vol 60 (8) ◽  
pp. 1101-1107
Author(s):  
C. V. Mathai ◽  
A. W. Harrison

As part of an ongoing general research program on the effects of atmospheric aerosols on visibility and its dependence on aerosol size distributions in Calgary, this paper presents the results of a comparative study of particle size distribution and visibility in residential (NW) and industrial (SE) sections of the city using a mobile laboratory. The study was conducted in the period October–December, 1979. An active scattering aerosol spectrometer measured the size distributions and the corresponding visibilities were deduced from scattering coefficients measured with an integrating nephelometer.The results of this transit study show significantly higher suspended particle concentrations and reduced visibilities in the SE than in the NW. The mean values of the visibilities are 44 and 97 km for the SE and the NW respectively. The exponent of R (particle radius) in the power law aerosol size distribution has a mean value of −3.36 ± 0.24 in the SE compared with the corresponding value of −3.89 ± 0.39 for the NW. These results arc in good agreement with the observations of Alberta Environment; however, they are in contradiction with a recent report published by the City of Calgary.


2010 ◽  
Vol 177 ◽  
pp. 22-24
Author(s):  
Zheng Min Li ◽  
Zhi Wei Chen ◽  
Min Tan ◽  
Ke Jing Xu ◽  
Bing Jiang

Nano-TiO2 coating film is one of the efficient photocatalysts. The particle size distribution of TiO2 has important influence on photocatalytic activity. A new method to determine the particle size distribution of TiO2 nano-film coated on ceramic was developed, by which the images of film acquired by Atom force microscope (AFM) were processed, and TiO2 particles contacted with others were separated and detected. The particle size distributions of two TiO2 nano-films were determined.


1994 ◽  
Vol 74 (2) ◽  
pp. 383-385 ◽  
Author(s):  
R. Soofi-Siawash ◽  
G. W. Mathison

Two studies were conducted to assess the possibility of using particle size distribution following grinding as a routine procedure of forage evaluation. It was concluded that although differences in particle size distribution could be detected when different feeds were ground, it would be difficult to standardize the technique since particle size distributions were influenced by type of mill used for grinding, particle size of forage before grinding, and moisture content of the forage. Key words: Forages, grinding, particle size, moisture, mill


2020 ◽  
Author(s):  
Joseph Pollacco ◽  
Jesús Fernández-Gálvez ◽  
Sam Carrick

<p>Indirect methods for estimating soil hydraulic properties from particle size distribution have been developed due to the difficulty in accurately determining soil hydraulic properties, and the fact that particle size distribution is one piece of basic soil physical information normally available. The similarity of the functions describing the cumulative distribution of particle size and pore size in the soil has been the basis for relating particle size distribution and the water retention function in the soil. Empirical and semi-physical models have been proposed, but these are based on strong assumptions that are not always valid. For example, soil particles are normally assumed to be spherical, with constant density regardless of their size; and the soil pore space has been described by an assembly of capillary tubes, or the pore space in the soil matrix is assumed to be arranged in a similar way regardless of particle size. However, in a natural soil the geometry of the pores may vary with the size of the particles, leading to a variable relation between particle radius and pore radius.</p><p> </p><p>The current work is based on the hypothesis that the geometry of the pore size and the void ratio depends on the size of the soil particles, and that a physically based model can be generalised to predict the water retention curve from particle size distribution. The rearrangement of the soil particles is considered by introducing a mixing function that modulates the cumulative particle size distribution, while the total porosity is constrained by the saturated water content.</p><p> </p><p>The model performance is evaluated by comparing the soil water retention curve derived from laboratory measurements with a mean Nash–Sutcliffe model efficiency a value of 0.92 and a standard deviation of 0.08. The model is valid for all soil types, not just those with a marginal clay fraction.</p>


1966 ◽  
Vol 6 (01) ◽  
pp. 55-61 ◽  
Author(s):  
J.J. Pickell ◽  
B.F. Swanson ◽  
W.B. Hickman

Abstract Many physical properties of the porous media-immiscible liquid system are dependent upon the distribution of fluids within the pores; this in turn, is primarily a function of pore structure, liquid-liquid interfacial tension and liquid-solid wetting conditions. The capillary pressure hysteresis process provides a means of investigating the influence of pore structure upon fluid distribution for consistent surface conditions. Investigations indicate that residual non-wetting-phase saturations following the imbibition process (i.e., wetting phase displacing non-wetting phase) are dependent upon both pore structure and initial non-wetting phase saturation and suggest that residual fluid is distributed to discontinuous globules, one to a few pore sizes in dimension, through the entire range of pore sizes originally occupied. It appears that air-mercury capillary pressure data adequately reflect the distribution of fluids in a water-oil system when strong wetting conditions prevail. An oil-air counter-current imbibition technique has also been found to provide a rapid means of obtaining residual-initial saturation data. In a majority of cases, residual saturations determined from the oil-air or air-mercury process reasonably approximate residual oil and saturation following water drive of a strongly water-wet medium. Introduction A reliable estimate of recoverable reserves depends not only on the amount of original oil-in-place but also on pore geometry and distribution of fluids within the pores. A critical parameter determining the recovery from a reservoir under waterflood, for example, is the amount and distribution of residual oil within the various rock types present. The purpose of this paper is to investigate the mechanism of capillary trapping and assess its importance in laboratory measurements of residual oil saturation. The degree of wettability of a reservoir rock is recognized as an important factor in waterflood or imbibition experiments. In this paper, however, only the water-wet case has been considered. Considerable experimental evidence1 suggests that for water-wet rocks, capillary forces predominate in the distribution of fluids and that viscous forces in the range normally of interest in the reservoir have a minimum influence on residual oil saturation. It follows that if the ultimate recovery is controlled by pore geometry, a unique residual non-wetting phase saturation should exist for a given set of initial conditions. Two laboratory procedures found to be extremely useful in the study of pore structure and degree of fluid interconnection at various saturations are described. Although air-mercury capillary injection curves have been used2 previously to characterize the drainage case, the withdrawal or imbibition case can provide valuable supplementary data. The air-mercury process, however, has several disadvantages; it is difficult to run in a sufficiently accurate manner, mercury does not always act as a strongly non-wetting liquid and in the air-mercury process the sample is rendered unsuitable for future analyses. An alternative process is described in which air is the non-wetting phase and naptha, heptane, octane or toluene is the wetting phase. Interfacial Tension and Capillary Pressure Interfacial tension between immiscible fluids is due to the difference in attraction of like molecules as compared with their attraction to molecules of the neighboring fluid. This net attraction results in a tension at the interface. To extend the interface; thus, interfacial tension s can also be thought of as free surface energy. Interfacial tension is normally expressed as dynes/cm, and interfacial energy is measured in ergs/cm2 hence, both have dimensions mLt-2 and are numerically equal.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Wenhao He ◽  
Asadollah Hayatdavoudi ◽  
Keyong Chen ◽  
Kaustubh Sawant ◽  
Qin Zhang ◽  
...  

Wellbore strengthening materials (WSMs) have been widely used to strengthen the wellbore stability and integrity, especially those lost circulation materials (LCMs) used for mud loss impairment. To enhance the wellbore strengthening effect rather than a loss impairment, plastering effect can be used to increase the fracture gradient of the wall and minimize the probability of inducing new fractures. This is done by smearing the mudcake and pores and forming an internal cake inside the rock matrix using WSMs (or LCMs). Until now, the particle size distribution (PSD) of LCMs have been widely studied for the minimization on the mud loss (e.g., Abran’s rule, ideal packing theory, D90 rule, Halliburton D50 rule, etc.). However, there are few empirical rules focused on the maximum wellbore strengthening effect. This study attempts to find the desired PSD of plastering materials to enhance wellbore stability. In this research, the Brazilian test was used to quantify tensile strength. Meanwhile, the filtration characteristics of WSMs through the rock matrix were observed using a scanning electron microscope (SEM) and an energy-dispersive system (EDS). Finally, this paper adopts D50 of WSMs to be the mean pore throat size for a maximum improvement on the rock tensile strength. We have observed that the closer the D50 of WSMs in the WSMs to the mean pore throat size, the stronger the saturated rock matrix.


2020 ◽  
Vol 57 (11) ◽  
pp. 1684-1694
Author(s):  
Shijin Li ◽  
Adrian R. Russell ◽  
David Muir Wood

Internal erosion (suffusion) is caused by water seeping through the matrix of coarse soil and progressively transporting out fine particles. The mechanical strength and stress–strain behavior of soils within water-retaining structures may be affected by internal erosion. Some researchers have set out to conduct triaxial erosion tests to study the mechanical consequences of erosion. Prior to conducting a triaxial test they subject a soil sample, which has an initially homogeneous particle-size distribution and density throughout, to erosion by causing water to enter one end of a sample and wash fine particles out the other. The erosion and movement of particles causes heterogeneous particle-size distributions to develop along the sample length. In this paper, a new soil sample formation procedure is presented that results in homogeneous particle-size distributions along the length of an eroded sample. Triaxial tests are conducted on homogeneous samples formed using the new procedure as well as heterogeneous samples created by the more commonly used approach. Results show that samples with homogeneous post-erosion particle-size distributions exhibit slightly higher peak deviator stresses than those that were heterogeneous. The results highlight the importance of ensuring homogeneity of post-erosion particle-size distributions when assessing the mechanical consequences of erosion. Forming samples using the new procedure enables the sample’s response to triaxial loading to be interpreted against a measure of its initially homogenous state.


CrystEngComm ◽  
2018 ◽  
Vol 20 (38) ◽  
pp. 5672-5676 ◽  
Author(s):  
Run-Zhi Zhang ◽  
Yong-qing Huang ◽  
Wei Zhang ◽  
Ji-Min Yang

UiO-67 nano/microcrystals with different particle size distributions (PSDs) were successfully obtained by a simple solvothermal method.


Sign in / Sign up

Export Citation Format

Share Document