Stimulation of Carbonates Combining Acid Fracturing With Proppant (CAPF): A Revolutionary Approach for Enhancement of Final Fracture Conductivity and Effective Fracture Half-Length

Author(s):  
Arthur Bale ◽  
Michael Berry Smith ◽  
Henry H. Klein
2014 ◽  
Vol 580-583 ◽  
pp. 2495-2501 ◽  
Author(s):  
Li Yang Song ◽  
Xiao Ru He ◽  
Ji Cheng Zhang

This paper recommends the application of acidic fracturing technology for horizontal wells in Yubei region basing on its fractured reservoir’s characteristics, and the numerical simulation method is used to optimize the parameters of acidic fracturing. According to the results of optimization, the proper acid system is selected, and the construction parameters of acidic fracturing are optimized. According to the results of numerical simulation, we recommend the fracture half-length to be 120m, the fracture conductivity to be 30D.cm, and the fracture number to be 5. According to the properties of reservoir in Yubei region and the optimization results of fracture half-length and fracture conductivity, the alternative injection of crosslinked acid and ordinary gelled acid is recommend. The injection rate of crosslinked acid is 5m3/min, with volume 300m3. The injection rate of ordinary gelled acid is 6m3/min, with volume 300m3.


Author(s):  
Hossein Mehrjoo ◽  
Saeid Norouzi-Apourvari ◽  
Hossein Jalalifar ◽  
Mostafa Shajari

2016 ◽  
Vol 9 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Hongling Zhang ◽  
Jing Wang ◽  
Haiyong Zhang

Shale gas is one of the primary types of unconventional reservoirs to be exploited in search for long-lasting resources. Production from shale gas reservoirs requires horizontal drilling with hydraulic fracturing to achieve the most economic production. However, plenty of parameters (e.g., fracture conductivity, fracture spacing, half-length, matrix permeability, and porosity,etc) have high uncertainty that may cause unexpected high cost. Therefore, to develop an efficient and practical method for quantifying uncertainty and optimizing shale-gas production is highly desirable. This paper focuses on analyzing the main factors during gas production, including petro-physical parameters, hydraulic fracture parameters, and work conditions on shale-gas production performances. Firstly, numerous key parameters of shale-gas production from the fourteen best-known shale gas reservoirs in the United States are selected through the correlation analysis. Secondly, a grey relational grade method is used to quantitatively estimate the potential of developing target shale gas reservoirs as well as the impact ranking of these factors. Analyses on production data of many shale-gas reservoirs indicate that the recovery efficiencies are highly correlated with the major parameters predicted by the new method. Among all main factors, the impact ranking of major factors, from more important to less important, is matrix permeability, fracture conductivity, fracture density of hydraulic fracturing, reservoir pressure, total organic content (TOC), fracture half-length, adsorbed gas, reservoir thickness, reservoir depth, and clay content. This work can provide significant insights into quantifying the evaluation of the development potential of shale gas reservoirs, the influence degree of main factors, and optimization of shale gas production.


2022 ◽  
Author(s):  
Josef R. Shaoul ◽  
Jason Park ◽  
Andrew Boucher ◽  
Inna Tkachuk ◽  
Cornelis Veeken ◽  
...  

Abstract The Saih Rawl gas condensate field has been producing for 20 years from multiple fractured vertical wells covering a very thick gross interval with varying reservoir permeability. After many years of production, the remaining reserves are mainly in the lowest permeability upper units. A pilot program using horizontal multi-frac wells was started in 2015, and five wells were drilled, stimulated and tested over a four-year period. The number of stages per horizontal well ranged from 6 to 14, but in all cases production was much less than expected based on the number of stages and the production from offset vertical wells producing from the same reservoir units with a single fracture. The scope of this paper is to describe the work that was performed to understand the reason for the lower than expected performance of the horizontal wells, how to improve the performance, and the implementation of those ideas in two additional horizontal wells completed in 2020. The study workflow was to perform an integrated analysis of fracturing, production and well test data, in order to history match all available data with a consistent reservoir description (permeability and fracture properties). Fracturing data included diagnostic injections (breakdown, step-rate test and minifrac) and main fracture treatments, where net pressure matching was performed. After closure analysis (ACA) was not possible in most cases due to low reservoir pressure and absence of downhole gauges. Post-fracture well test and production matching was performed using 3D reservoir simulation models including local grid refinement to capture fracture dimensions and conductivity. Based on simulation results, the effective propped fracture half-length seen in the post-frac production was extremely small, on the order of tens of meters, in some of the wells. In other wells, the effective fracture half-length was consistent with the created propped half-length, but the fracture conductivity was extremely small (finite conductivity fracture). The problems with the propped fractures appear to be related to a combination of poor proppant pack cleanup, low proppant concentration and small proppant diameter, compounded by low reservoir pressure which has a negative impact on proppant regained permeability after fracturing with crosslinked gel. Key conclusions from this study are that 1) using the same fracture design in a horizontal well with transverse fractures will not give the same result as in a vertical well in the same reservoir, 2) the effect of depletion on proppant pack cleanup in high temperature tight gas reservoirs appears to be very strong, requiring an adjustment in fracture design and proppant selection to achieve reasonable fracture conductivity, and 3) achieving sufficient effective propped length and height is key to economic production.


2021 ◽  
Author(s):  
Rencheng Dong ◽  
Mary F. Wheeler ◽  
Hang Su ◽  
Kang Ma

Abstract Acid fracturing technique is widely applied to stimulate the productivity of carbonate reservoirs. The acid-fracture conductivity is created by non-uniform acid etching on fracture surfaces. Heterogeneous mineral distribution of carbonate reservoirs can lead to non-uniform acid etching during acid fracturing treatments. In addition, the non-uniform acid etching can be enhanced by the viscous fingering mechanism. For low-perm carbonate reservoirs, by multi-stage alternating injection of a low-viscosity acid and a high-viscosity polymer pad fluid during acid fracturing, the acid tends to form viscous fingers and etch fracture surfaces non-uniformly. To accurately predict the acid-fracture conductivity, this paper developed a 3D acid fracturing model to compute the rough acid fracture geometry induced by multi-stage alternating injection of pad and acid fluids. Based on the developed numerical simulator, we investigated the effects of viscous fingering, perforation design and stage period on the acid etching process. Compared with single-stage acid injection, multi-stage alternating injection of pad and acid fluids leads to narrower and longer acid-etched channels.


2014 ◽  
Vol 1042 ◽  
pp. 44-51
Author(s):  
Jia Nye Mou ◽  
Mao Tang Yao ◽  
Ke Xiang Zheng

Acid fracture conductivity is a key parameter in acid fracturing designs and production performance prediction. It depends on the fracture surface etching pattern, rock mechanical properties, and closure stress. The fracture surfaces undergo creep deformation under closure stress during production. Preservation of fracture conductivity becomes a challenge at elevated closure stress. In this paper, we investigated acid fracture conductivity behavior of Tahe deep carbonate reservoir with high closure stress and high temperature. A series of acid fracture conductivity experiment was conducted in a laboratory facility designed to perform acid fracture conductivity. Gelled acid and cross linked acid with different acid-rock contact times were tested for analyzing the effect of acid type and acid-rock contact time on the resulting conductivity. Closure stress up to 100MPa was tested to verify the feasibility of acid fracturing for elevated closure stress. Long-term conductivity up to 7-day was tested to determine the capability of conductivity retaining after creep deformation. Composite conductivity of acid fracture with prop pant was also carried out. The study shows that the fracture retained enough conductivity even under effective closure stress of 70MPa. The gelled acid has a much higher conductivity than the cross linked acid for the same contact time. For the gelled acid, contact time above 60-minute does not lead to conductivity increase. Acid fracture with prop pant has a lower conductivity at low closure stress and a higher conductivity at high closure stress than the acid fracture, which shows composite conductivity is a feasible way to raise conductivity at high closure stress. The long-term conductivity tests show that the acid fracture conductivity decreases fast within the first 48-hour and then levels off. The conductivity keeps stable after 120-hour. An acid fracture conductivity correlation was also developed for this reservoir.


2021 ◽  
Author(s):  
Tohoko Tajima

Abstract Modeling of acid fracturing process is challenging because of the coupled complex effects of flow through porous media and fractures, chemical reaction in a geostatistical base, wormhole propagation, and reservoir heterogeneity. To avoid the complexity, decoupled approaches are commonly used; the reservoir effect is represented by leakoff with a constant leakoff coefficient, and analytical solutions for heat flux from a reservoir is used to avoid complexity. An acid fracturing numerical model is presented that is coupled with a single-phase black oil reservoir simulator for a vertical well in the carbonate reservoir. The coupled acid fracturing model considers fracture propagation, acid transport, and heat transfer. After simulating acid fracturing, the conductivity of the fracture is calculated using empirical correlations, and the productivity is computed by simulating the flow to the well. Non-isothermal condition is assumed to simulate the flow in both the fracture and reservoir because the acid reaction is temperature sensitive. Leakoff from fracture to reservoir is simulated with a reservoir flow model for pressure and leakoff velocity as functions of time and location. Wormhole propagation from the fracture is considered by using empirical equations for wormhole propagation based on leakoff velocity estimated from the reservoir simulation. The benefits of coupled modeling are evaluated by comparing the conventional acid fracturing model which uses a decoupled approach to the numerical acid fracturing model developed in this study. The results show that the coupling reservoir model improves the accuracy of estimated in fracture conductivity. It has been shown that the analytical equations for heat from a reservoir used in literature overestimates the final acid fracture conductivity. Thus, it is suggested to use fully numerically solve fluid flow and energy balance in a fracture and a reservoir. Complex leakoff due to pressure and temperature change with time and wormhole propagation was implemented in the simulator. The wormhole effect was added and the distribution of leakoff coefficient was reasonable. A comparison of simulation results with and without wormholes showed that the significant difference was not observed in acid concentration, but ideal width distribution was lower with wormholes. It is concluded based on the observation of the study that the leakoff from acid fracture represented by a reservoir model with wormhole propagation is important to correctly understand acid fracture efficiency. Simply using a constant leakoff coefficient can lead to significant error and misleading conclusions.


2021 ◽  
Author(s):  
Rencheng Dong ◽  
Mary F. Wheeler ◽  
Hang Su ◽  
Kang Ma

Abstract As our industry is tapping into tighter carbonate reservoirs than in the past, completion techniques need to be improved to stimulate the low-permeability carbonate formation. Multistage acid fracturing technique has been developed in recent years and proved to be successful in some carbonate reservoirs. A multistage acid fracturing job is to perform several stages of acid fracturing along a horizontal well. The goal of acid fracturing operations is to create enough fracture roughness through differential acid etching on fracture walls such that the acid fracture can keep open and sustain a high enough acid fracture conductivity under the closure stress. In multistage acid fracturing treatments, acid flow is in a radial flow scenario and the acid etching process can be different from acid fracturing in vertical wells. In order to accurately predict the acid-fracture conductivity, a detailed description of the rough acid-fracture surfaces is required. In this paper, we developed a 3D acid transport model to compute the geometry of acid fracture for multistage acid fracturing treatments. The developed model couples the acid fluid flow, reactive transport and rock dissolution in the fracture. We also included acid viscous fingering in our model since viscous fingering mechanism is commonly applied in multistage acid fracturing to achieve non-uniform acid etching. Our simulation results reproduced the acid viscous fingering phenomenon observed from experiments in the literature. During the process of acid viscous fingering, high-conductivity channels developed in the fingering regions. We modeled the acid etching process in multistage acid fracturing treatments and compared it with acid fracturing treatments in vertical wells. We found that due to the radial flow effect, it is more difficult to achieve non-uniform acid etching in multistage acid fracturing treatments than in vertical wells. We investigated the effects of perforation design and pad fluid viscosity on multistage acid fracturing treatments. We need to have an adequate number of perforations in order to develop non-uniform acid etching. We found that a higher viscosity pad fluid helps acid to penetrate deeper in the fracture and result in a longer and narrower etched channel.


Sign in / Sign up

Export Citation Format

Share Document