Quantifying the Impact of Permeability Heterogeneity on Secondary-Recovery Performance

SPE Journal ◽  
2012 ◽  
Vol 17 (02) ◽  
pp. 455-468 ◽  
Author(s):  
B.. Rashid ◽  
A.H.. H. Muggeridge ◽  
A.. Bal ◽  
G.. Williams

Summary An improved heterogeneity/homogeneity index is introduced that uses the shear-strain rate of the single-phase-velocity field to characterize heterogeneity and rank geological realizations in terms of their impact on secondary-recovery performance. The index is compared with the Dykstra-Parsons coefficient (Dykstra and Parsons 1950) and the dynamic Lorenz coefficient (Shook and Mitchell 2009). The results show that the index's ranking ability is preserved for miscible and immiscible displacements at different viscosity/mobility ratios. Neither the Dykstra-Parsons coefficient (Dykstra and Parsons 1950) nor the dynamic Lorenz coefficient (Shook and Mitchell 2009) can consistently discriminate between different realizations in terms of breakthrough time and oil recovery at 1 pore volume injected (PVI) for tracer flow or adverse-viscosity-ratio miscible and immiscible floods.

2014 ◽  
Vol 17 (03) ◽  
pp. 304-313 ◽  
Author(s):  
A.M.. M. Shehata ◽  
M.B.. B. Alotaibi ◽  
H.A.. A. Nasr-El-Din

Summary Waterflooding has been used for decades as a secondary oil-recovery mode to support oil-reservoir pressure and to drive oil into producing wells. Recently, the tuning of the salinity of the injected water in sandstone reservoirs was used to enhance oil recovery at different injection modes. Several possible low-salinity-waterflooding mechanisms in sandstone formations were studied. Also, modified seawater was tested in chalk reservoirs as a tertiary recovery mode and consequently reduced the residual oil saturation (ROS). In carbonate formations, the effect of the ionic strength of the injected brine on oil recovery has remained questionable. In this paper, coreflood studies were conducted on Indiana limestone rock samples at 195°F. The main objective of this study was to investigate the impact of the salinity of the injected brine on the oil recovery during secondary and tertiary recovery modes. Various brines were tested including deionized water, shallow-aquifer water, seawater, and as diluted seawater. Also, ions (Na+, Ca2+, Mg2+, and SO42−) were particularly excluded from seawater to determine their individual impact on fluid/rock interactions and hence on oil recovery. Oil recovery, pressure drop across the core, and core-effluent samples were analyzed for each coreflood experiment. The oil recovery using seawater, as in the secondary recovery mode, was, on the average, 50% of original oil in place (OOIP). A sudden change in the salinity of the injected brine from seawater in the secondary recovery mode to deionized water in the tertiary mode or vice versa had a significant effect on the oil-production performance. A solution of 20% diluted seawater did not reduce the ROS in the tertiary recovery mode after the injection of seawater as a secondary recovery mode for the Indiana limestone reservoir. On the other hand, 50% diluted seawater showed a slight change in the oil production after the injection of seawater and deionized water slugs. The Ca2+, Mg2+, and SO42− ions play a key role in oil mobilization in limestone rocks. Changing the ion composition of the injected brine between the different slugs of secondary and tertiary recovery modes showed a measurable increase in the oil production.


2021 ◽  
Author(s):  
Da Zhu ◽  
Mohan Sivagnanam ◽  
Ian Gates

Abstract Supersonic gas injection can help deliver gas uniformly to a reservoir, regardless of reservoir conditions. This technology has played a key role in enhanced oil recovery (EOR) and in particular, thermal enhanced oil recovery operations. Most previous studies have focused on single phase gas injection whereas in most field applications, multiphase and multicomponent situations occur. In the research documented in this paper, we report on results of evaluations of compressible multiphase supersonic gas flows in which gas is the continuous phase is seeded with dispersed liquid droplets or solid particles. Theoretical derivation and numerical simulations with and without relative motions between continuous and disperse phases are examined first. The results illustrate that the shock wave structures and flow properties associated with the multiphase gas flows are different than that of single-phase isentropic flows. The existence and importance of relaxation zones after the normal shock wave in multiphase flow is described. Numerical computational fluid dynamics (CFD) simulations are conducted to show how the multiphase multicomponent flow affects gas phase injection under different conditions. The impact of solid/liquid mass loading on flow performance is discussed. Finally, the practical application of the findings is discussed.


2020 ◽  
Vol 1 (2) ◽  
pp. 83
Author(s):  
Madi Abdullah Naser ◽  
Mohammed A Samba ◽  
Yiqiang Li

Laboratory tests and field applications shows that the salinity of water flooding could lead to significant reduction of residual oil saturation. There has been a growing interest with an increasing number of low-salinity water flooding studies. However, there are few quantitative studies on seawater composition change and it impact on increasing or improving oil recovery.  This study was conducted to investigate only two parameters of the seawater (Salinity and pH) to check their impact on oil recovery, and what is the optimum amount of salinity and ph that we can use to get the maximum oil recovery.  Several core flooding experiments were conducted using sandstone by inject seawater (high, low salinity and different pH). The results of this study has been shown that the oil recovery increases as the injected water salinity down to 6500 ppm and when the pH is around 7. This increase has been found to be supported by an increase in the permeability. We also noticed that the impact of ph on oil recovery is low when the pH is less than 7.


2012 ◽  
Vol 529 ◽  
pp. 560-563
Author(s):  
Hui Lu ◽  
Sheng Lai Yang ◽  
Yan Bin Zhang ◽  
Li Xie ◽  
Ke Hou Zhou ◽  
...  

In this paper, the main factors that affect the displacement efficiency were experimental studied by means of the physical cylinder model filled with sand, based on the high efficiency of oil displacing water in the process of hydrocarbon accumulation. After eliminating of some factors that affect displacement efficiency, such as viscosity ratio, wettability and reservoir heterogeneity and so on, the research founds that the crude oil unit connectivity, that is continuity of displaced phase, has a significant impact on the displacement efficiency. The experimental results show that the crude oil unit connectivity is more than wettability, and not less than viscosity, as the factors of the impact of displacement efficiency. If the crude oil unit connectivity is serious damaged, even if the wettability of reservoir rocks was changed by improving the viscosity of injected water, its effect of enhanced oil recovery should not be obvious. In fact, this is main reason that the effect of current the EOR method such as polymer flooding, surfactant flooding and stuff was not obvious. It is expected that the research results will be useful in the displacement efficiency of waterflooding that is controlled by the crude oil unit connectivity.


SPE Journal ◽  
2014 ◽  
Vol 19 (04) ◽  
pp. 674-686 ◽  
Author(s):  
N.. Rezaei ◽  
A.. Firoozabadi

Summary This work presents experimental results and interpretation of injection pressure and recovery performance of waterflooding in strongly water-wet fired Berea cores saturated with n-heptane. The experiments were conducted at constant injection rate at room conditions, and the effects of injection rate and initial water saturation on the oil-recovery performance and dynamic-injection pressure were investigated. Elements of surprise were observed in the injection-pressure data. The pressure profiles showed four distinct regimes, each governed by capillary or viscous forces. At low capillary numbers (Ca=uμ/σ<10–6), capillarity governed two pressure regimes, corresponding to the core inlet and outlet. In the early part of waterflooding, pressure stayed constant for a considerable time before hydrodynamic pressure gradient could overcome the capillary pressure gradient. After viscous forces dominated, a linear increase in injection pressure over time was observed up to breakthrough time. A sudden pressure rise was observed close to breakthrough because of capillary retention at the core outlet. The pressure became constant after the breakthrough when the water- and oil-saturation distributions were stabilized. Changing the injection rate by an order of magnitude in the range from 2.2 to 22.2 pore volumes (PV)/D (equivalent to Ca = 10–7 to 10–6) did not appreciably change the oil-recovery performance; similar breakthrough time and final oil recovery were observed. The effect of initial water saturation was also investigated. When lowering the initial water saturation beyond that established in oil flooding, production performance and injection pressure were similar to those of a core without the initial water saturation. The injection pressure at breakthrough was found to decrease with increase of the initial water saturation. Waterflooding was modeled by including the capillary pressure and excellent agreement was obtained with experimental results of production and injection pressure. We find that in the absence of in-situ saturation measurements, the injection pressure is a better variable for tuning the model parameters compared with the production history alone.


2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


Sign in / Sign up

Export Citation Format

Share Document