Kinetics of Low-Salinity-Flooding Effect

SPE Journal ◽  
2014 ◽  
Vol 20 (01) ◽  
pp. 8-20 ◽  
Author(s):  
H.. Mahani ◽  
S.. Berg ◽  
D.. Ilic ◽  
W.-B.. -B. Bartels ◽  
V.. Joekar-Niasar

Summary Low-salinity waterflooding (LSF) is one of the least-understood enhanced-oil-recovery (EOR)/improved-oil-recovery (IOR) methods, and proper understanding of the mechanism(s) leading to oil recovery in this process is needed. However, the intrinsic complexity of the process makes fundamental understanding of the underlying mechanism(s) and the interpretation of laboratory experiments difficult. Therefore, we use a model system for sandstone rock of reduced complexity that consists of clay minerals (Na-montmorillonite) deposited on a glass substrate and covered with crude-oil droplets and in which different effects can be separated to increase our fundamental understanding. We focus particularly on the kinetics of oil detachment when exposed to low-salinity (LS) brine. The system is equilibrated first under high-salinity (HS) brine and then exposed to brines of varying (lower) salinity while the shape of the oil droplets is continuously monitored at high resolution, allowing for a detailed analysis of the contact angle and the contact area as a function of time. It is observed that the contact angle and contact area of oil with the substrate reach a stable equilibrium at HS brine and show a clear response to the LS brine toward less-oil-wetting conditions and ultimately detachment from the clay substrate. This behavior is characterized by the motion of the three-phase (oil/water/solid) contact line that is initially pinned by clay particles at HS conditions, and pinning decreases upon exposure to LS brine. This leads to a decrease in contact area and contact angle that indicates wettability alteration toward a more-water-wet state. When the contact angle reaches a critical value at approximately 40 to 50°, oil starts to detach from the clay. During detachment, most of the oil is released, but in some cases a small amount of oil residue is left behind on the clay substrate. Our results for different salinity levels indicate that the kinetics of this wettability change correlates with a simple buoyancy- over adhesion-force balance and has a time constant of hours to days (i.e., it takes longer than commonly assumed). The unexpectedly long time constant, longer than expected by diffusion alone, is compatible with an electrokinetic ion-transport model (Nernst-Planck equation) in the thin water film between oil and clay. Alternatively, one could explain the observations only by more-specific [non- Derjaguin–Landau–Verwey–Overbeek (DLVO) type] interactions between oil and clay such as cation-bridging, direct chemical bonds, or acid/base effects that tend to pin the contact line. The findings provide new insights into the (sub) pore-scale mechanism of LSF, and one can use them as the basis for upscaling to, for example, pore-network scale and higher scales (e.g., core scale) to assess the impact of the slow kinetics on the time scale of an LSF response on macroscopic scales.

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1296 ◽  
Author(s):  
Reidun C. Aadland ◽  
Salem Akarri ◽  
Ellinor B. Heggset ◽  
Kristin Syverud ◽  
Ole Torsæter

Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research objectives. In Part 1, secondary core flood using CNCs was compared to regular water flooding at fixed conditions, by reusing the same core plug to maintain the same pore structure. CNCs produced 5.8% of original oil in place (OOIP) more oil than LSW. For Part 2, the effect of injection scheme, temperature, and rock wettability was investigated using CNCs. The same trend was observed for the secondary floods, with CNCs performing better than their parallel experiment using LSW. Furthermore, the particles seemed to perform better under mixed-wet conditions. Additional oil (2.9–15.7% of OOIP) was produced when CNCs were injected as a tertiary EOR agent, with more incremental oil produced at high temperature. In the final part, the effect of particle type was studied. T-CNFs produced significantly more oil compared to CNCs. However, the injection of T-CNF particles resulted in a steep increase in pressure, which never stabilized. Furthermore, a filter cake was observed at the core face after the experiment was completed. Microfluidic experiments showed that both T-CNF and CNC nanofluids led to a better sweep efficiency compared to low salinity water flooding. T-CNF particles showed the ability to enhance the oil recovery by breaking up events and reducing the trapping efficiency of the porous medium. A higher flow rate resulted in lower oil recovery factors and higher remaining oil connectivity. Contact angle and interfacial tension measurements were conducted to understand the oil recovery mechanisms. CNCs altered the interfacial tension the most, while T-CNFs had the largest effect on the contact angle. However, the changes were not significant enough for them to be considered primary EOR mechanisms.


2017 ◽  
Vol 29 (2) ◽  
pp. 281-300 ◽  
Author(s):  
AARON BARDALL ◽  
KAREN E. DANIELS ◽  
MICHAEL SHEARER

On a sufficiently soft substrate, a resting fluid droplet will cause significant deformation of the substrate. This deformation is driven by a combination of capillary forces at the contact line and the fluid pressure at the solid surface. These forces are balanced at the surface by the solid traction stress induced by the substrate deformation. Young's Law, which predicts the equilibrium contact angle of the droplet, also indicates an a priori radial force balance for rigid substrates, but not necessarily for soft substrates that deform under loading. It remains an open question whether the contact line transmits a non-zero force tangent to the substrate surface in addition to the conventional normal (vertical) force. We present an analytic Fourier transform solution technique that includes general interfacial energy conditions, which govern the contact angle of a 2D droplet. This includes evaluating the effect of gravity on the droplet shape in order to determine the correct fluid pressure at the substrate surface for larger droplets. Importantly, we find that in order to avoid a strain singularity at the contact line under a non-zero tangential contact line force, it is necessary to include a previously neglected horizontal traction boundary condition. To quantify the effects of the contact line and identify key quantities that will be experimentally accessible for testing the model, we evaluate solutions for the substrate surface displacement field as a function of Poisson's ratio and zero/non-zero tangential contact line forces.


2020 ◽  
Vol 10 (5) ◽  
pp. 6328-6342 ◽  

Low salinity water in the oil reservoirs changes the wettability and increases the oil recovery factor. In sandstone reservoirs, the sand production occurs or intensifies with wettability alteration due to low salinity water injection. In any case, sand production should be stopped and there are many ways to prevent sand production. By modifying the composition of low salinity water, it can be adapted to be more compatible with the reservoir rock and formation water, which has the least formation damage. By eliminating magnesium and calcium ions, smart soft water (SSW) is created which is economically suitable for injection into the reservoirs. By stabilizing the nanoparticles in SSW, nanofluids can be prepared which with injection into the sandstones reservoir increase the oil recovery, change the wettability and increase the rock strength. In this present, SSW composition was determined by compatibility testing, and the SiO2 nanoparticle with 1000 ppm concentration was stabilized in SSW. Eight thin sections were oil wetted by using normal heptane solution and different molars of stearic acid and two thin sections were considered as base thin sections to compare the effect of wettability alteration on sand production. Thin sections were immersed in SSW and Nanofluid, the amount of contact angle and sand production were measured in both cases. The amount of sand produced and the contact angle in SSW was higher than the Nanofluid. The silica nanoparticles reduced the contact angle (more water wetting) and by sitting between the sand particles, more than 40%, it reduced sand production.


2021 ◽  
Vol 925 ◽  
Author(s):  
Quoc Vo ◽  
Tuan Tran

Electrowetting on dielectric (EWOD) is a powerful tool in many droplet-manipulation applications with a notorious weakness caused by contact-angle saturation (CAS), a phenomenon limiting the equilibrium contact angle of an EWOD-actuated droplet at high applied voltage. In this paper, we study the spreading behaviours of droplets on EWOD substrates with the range of applied voltage exceeding the saturation limit. We experimentally find that at the initial stage of spreading, the driving force at the contact line still follows the Young–Lippmann law even if the applied voltage is higher than the CAS voltage. We then theoretically establish the relation between the initial contact-line velocity and the applied voltage using the force balance at the contact line. We also find that the amplitude of capillary waves on the droplet surface generated by the contact line's initial motion increases with the applied voltage. We provide a working framework utilising EWOD with voltages beyond CAS by characterising the capillary waves formed on the droplet surface and their self-similar behaviours. We finally propose a theoretical model of the wave profiles taking into account the viscous effects and verify this model experimentally. Our results provide avenues to utilise the EWOD effect with voltages beyond the CAS threshold, and have strong bearing on emerging applications such as digital microfluidic and ink-jet printing.


Author(s):  
Brandon S. Field

Capillary rise of air-water-solid systems have been recorded with high-speed video. Glass and metal have been used as the solid phase, and the dynamic shape of the meniscus and contact angle have been characterized. The advancing and receding contact angle is of interest in computational simulations of boiling flow, and the present visualizations attempt to quantify the dynamic aspects of contact line motion. The centroid of the capillary meniscus has been tracked in order to determine the force at the contact line based on a force balance of the elevated fluid phase. The solid phase is raised and lowered in the fluid at different rates to observe advancing and receding contact lines.


Author(s):  
S. Ravi Annapragada ◽  
Susmita Dash ◽  
Suresh V. Garimella ◽  
Jayathi Y. Murthy

The static shape of droplets under electrowetting actuation is well-understood. The steady-state shape of the droplet is obtained based on the balance of surface tension and electrowetting forces, and the change in apparent contact angle is well-characterized by the Young-Lippmann equation. However, the transient droplet shape behavior when a voltage is suddenly applied across a droplet has received less attention. Additional dynamic frictional forces are at play during this transient process. We present a model to predict this transient behavior of the droplet shape under electrowetting actuation. The droplet shape is modeled using the volume of fluid method. The electrowetting and dynamic frictional forces are included as an effective dynamic contact angle through a force balance at the contact line. The model is used to predict the transient behavior of water droplets on smooth hydrophobic surfaces under electrowetting actuation. The predictions of transient behavior of droplet shape and contact radius are in excellent agreement our experimental measurements. The internal fluid motion is explained and the droplet motion is shown to initiate from the contact line. An approximate mathematical model is also developed to understand the physics of the droplet motion and to describe the overall droplet motion and the contact line velocities.


2021 ◽  
Author(s):  
Ibraheem Salaudeen ◽  
Muhammad Rehan Hashmet ◽  
Peyman Pourafshary

Abstract Nano particle-assisted engineered water is one of the newest hybrid methods of Enhanced Oil Recovery (EOR) that is gaining attention in the oil and gas industry. This is attributed to the low cost of the technique and environmental friendliness of the materials involved. Low salinity and ions adjustment of the injection brine has been reported to be very useful for improving oil production in carbonates, and application of nanoparticles (NPs) to improve oil recovery via different mechanisms such as wettability alteration, interfacial tension reduction, disjoining pressure and viscosity modification. This paper therefore investigates the combined effects of these two techniques on oil-brine-rock (OBR) interactions in carbonate reservoirs. Caspian Sea Water salinity of 13000 ppm was synthesized in the laboratory, potential determining ions such as Mg2+, Ca2+ and SO42- were adjusted to obtain the desired engineered waters used as dispersant for SiO2 nanoparticle. A series of experiments were performed ranging from zeta potential, interfacial tension, contact angle, electron scanning environmental imaging, pH analysis and particle size to determine the optimum formulation of engineered low salinity brine and nanoparticle. The salinities and concentration of NP considered in this experimental study ranges between (3,250 - 40,000) ppm and (0.05 - 0.5) wt.%, respectively. It was observed that optimum homogenization time for achieving stability of the chosen nanofluid without using stabilizer is 45 minutes. Four times sulphate and calcium ions in the engineered water reduced the contact angle from 163 to 109 and 151 to 118 degrees respectively. However, in the presence of NP, the contact angle further reduced to a very low values of 5 and 41 degrees. This confirms the combined effects of EW and that of nanofluid (NF) in altering wettability from the hydrophobicity state to hydrophilicity one that rapidly improves oil recovery in carbonate reservoir. IFT measurements were made between oil and formation brine as well as between oil and different EWs at room temperature. The Formation water has the least value of interfacial tension- 15mN/m. Four times diluted sea water spiked with four times sulphate is denoted as 4dsw4S. The zeta potential values showed dsw4S-NF to be the most stable, whereas EW-NF spiked with 4 times Mg2+ show detrimental effects on NF stability. The nanoparticles sizes were measured to be less than 50 nm. Rheological studies of the EW-NF at different temperatures (25, 40, 60 and 80 degrees Celsius) shows similar trend of Newtonian and non-Newtonian behavior at shear rate less than 100 and above 100 per seconds respectively. We conclude that spiking calcium ion and sulphate ion into the injected brine in combination with 0.1wt% NP yielded the wettability alteration in carbonate rock samples. The significant reduction in wettability is attributed to the combined effects of the active mechanisms present in the hybrid method and is considerably better than each standalone technique.


SPE Journal ◽  
2021 ◽  
pp. 1-24
Author(s):  
Maissa Souayeh ◽  
Rashid S. Al-Maamari ◽  
Ahmed Mansour ◽  
Mohamed Aoudia ◽  
Thomas Divers

Summary Coupling polymer with low-salinity water (LSW) to promote enhanced oil recovery (EOR) in carbonate reservoirs has attracted significant interest in the petroleum industry. However, low-salinity polymer (LSP) application to improve oil extraction from such rocks remains a challenge because of the complex synergism between these two EOR agents. Thus, this paper highlights the main factors that govern the LSP displacement process in carbonate reservoirs in terms of wettability alteration and mobility control. A series of experiments including contact angle, spontaneous imbibition, injectivity, adsorption, and oil displacement tests were performed. The impact of mineral dissolution on the polymer/brine and polymer/rock surface interactions and its possible connection to the efficiency of the LSP in carbonates was also investigated using ζ potential analysis following an elaborative procedure. All experiments were executed at elevated temperature (75°C) using two polymers (SAV10) of different molecular weights (MWs) prepared at varying concentrations and salinities. Contact angle measurements showed that increasing the polymer concentration and MW and, at the same time, decreasing the solution salinity could effectively rend homogeneous oil-wet calcite surfaces strongly water-wet. Conversely, spontaneous imbibition tests using heterogonous oil-wet Indiana limestone cores showed that the polymer viscosity and its molecular size hinder the performance of the polymer to modify the wettability of the core samples at high concentration and MW because they could limit its penetration into the porous medium. On the other hand, the results obtained from polymer injectivities showed that LSP had better propagation with lower filtration effects in comparison with high-salinity polymer (HSP). However, polymer adsorption and inaccessible pore volume (IPV) increased with the decrease of salinity. Calcite mineral dissolution triggered by LSP, which is associated with an increase in pH and [Ca2+], considerably influenced the polymer viscosity. In addition, ζ potential measurements showed that the LSP altered the rock surface charge from positive toward negative and at the same time, the Ca2+ released due to mineral dissolution could modify the polymer molecule charge toward positive. This confirms that mineral dissolution impressively results in better wettability alteration performance; however, it could lead to undesirable high polymer adsorption at low salinity. These findings provide new insight into the influence of mineral dissolution on polymer performance in carbonates. Finally, forced oil displacement tests revealed that both HSP and LSP extracted approximatively the same amount of oil. The HSP could enhance the oil recovery through mobility control. By contrast, wettability alteration could take part in the improvement of oil recovery at LSP, as proved by spontaneous imbibition tests, along with mobility control. Despite possessing high wettability alteration potential, LSP could not yield very high recovery because of its low accessibility into the porous medium. Shearing of the LSP was found effective in improving oil recovery through enhancing the polymer accessibility. This will lead us to simply say that polymer accessibility into carbonates is crucial for the success of the wettability alteration and mobility control processes, which is remarkably important not only for this specific study but also for other various polymer EOR applications.


2007 ◽  
Vol 129 (8) ◽  
pp. 957-965 ◽  
Author(s):  
Shong-Leih Lee ◽  
Hong-Draw Lee

There are still many unanswered questions related to the problem of a capillary surface rising in a tube. One of the major questions is the evolution of the liquid meniscus shape. In this paper, a simple geometry method is proposed to solve the force balance equation on the liquid meniscus. Based on a proper model for the macroscopic dynamic contact angle, the evolution of the liquid meniscus, including the moving speed and the shape, is obtained. The wall condition of zero dynamic contact angle is allowed. The resulting slipping velocity at the contact line resolves the stress singularity successfully. Performance of the present method is examined through six well-documented capillary-rise examples. Good agreements between the predictions and the measurements are observable if a reliable model for the dynamic contact angle is available. Although only the capillary-rise problem is demonstrated in this paper, the concept of this method is equally applicable to free surface flow in the vicinity of a contact line where the capillary force dominates the flow.


Sign in / Sign up

Export Citation Format

Share Document