Efficient Displacement of Heavy Oil by Use of Three Hydrocarbon Phases

SPE Journal ◽  
2014 ◽  
Vol 19 (05) ◽  
pp. 956-973 ◽  
Author(s):  
R.. Okuno ◽  
Z.. Xu

Summary Mixtures of oil with solvent gas can exhibit three-hydrocarbon-phase behavior at reservoir conditions, where the solvent-rich liquid (L2) phase coexists with the gaseous (V) and oleic (L1) phases. Three-hydrocarbon-phase behavior has been studied in the literature for carbon dioxide (CO2) floods and enriched-gas floods at relatively low temperatures. Prior research on heavy-oil displacement with enriched gas presented that displacement efficiency at a given throughput can be nonmonotonic with respect to gas enrichment. Slimtube experiments for such displacements showed that oil recovery increased first, then decreased, and increased again with increasing gas enrichment. An optimum displacement with a high efficiency of more than 90% was observed when three-hydrocarbon-phase flow was present. However, detailed mechanisms for such an optimum displacement with three phases have not been explained in the literature. In this research, we investigate mass transfer on multiphase transitions between two and three phases for three-hydrocarbon-phase displacements. Simple conditions are derived for the multiphase transitions that yield high local displacement efficiency by three hydrocarbon phases. The derivation is based on the generalized mass conservation for a multiphase transition in 1D gas injection. The conditions derived are applied to explain nonmonotonic oil recovery in quaternary displacements and the West Sak oil displacements. Oil recovery at a given throughput can be nonmonotonic with respect to pressure or gas enrichment. Such a nonmonotonic trend can occur when local oil displacement by three hydrocarbon phases becomes more efficient, but slower, with decreasing pressure or decreasing gas enrichment. An optimum pressure or enrichment can occur as a consequence of the balance between the local displacement efficiency and the propagation rate of three hydrocarbon phases. The West Sak oil displacement with enriched gas studied in this research yields a high displacement efficiency of more than 90% at 1.5 hydrocarbon pore volumes (PV) injected at 53% methane (C1) dilution.

2012 ◽  
Vol 550-553 ◽  
pp. 468-471
Author(s):  
Fu Sheng Zhang ◽  
Jian Ouyang ◽  
De Wei Wang ◽  
Xin Fang Feng ◽  
Li Qing Xu

The core displacement experiments show that displacement system containing chemical agent can enhance oil recovery by over 20% comparing to water flooding. Mechanisms by which chemical agent enhance oil recovery of heavy oil reservoir water flooding are: (1) improving mobility ratio by significantly decreasing viscosity of heavy oil, volumetric sweep efficiency is improved; (2) increasing capillary number by significantly decreasing oil-water interfacial tension, oil displacement efficiency is increased; (3) changing wettability of the rock surface from oil-wet to water-wet by significantly reducing the contact angle between displacement liquid and sandstone surface, capillary force is changed from the resistance force to the motive force, the residual oil is expelled from the small pores and the wall of pores, oil displacement efficiency is significantly increased.


2021 ◽  
Author(s):  
M. Qu

Recently, much attention has been directed towards the applications of nanofluids for enhanced oil recovery (EOR). Here, amphiphilic molybdenum disulfide (KH550-MoS2) nanosheets were synthesized using a hydrothermal approach. The physicochemical properties and potential EOR of ultra-low concentration KH550-MoS2 nanofluids were systematically investigated under reservoir conditions at Changqing Oilfield (China) (temperature~55℃ and salinity~7.8×104 mg/L). Interfacial tension (IFT), wettability change, and emulsion stability were measured to evaluate the physicochemical properties of the KH550-MoS2 nanofluids. The results showed that ultra-low concentration of KH550-MoS2 nanofluid (50 mg/L) could decrease IFT to 2.6 mN/m, change the contact angle (CTA) from 131.2° to 51.7° and significantly enhance emulsion stability. Core flooding experiments were conducted to determine the dynamic adsorption loss law and the oil displacement efficiency of KH550-MoS2 nanofluid. The results indicated that the ratio of cumulative produced KH550-MoS2 nanosheets to the total injected KH550-MoS2 nanosheets (CNR) reached 91.5% during flooding in low permeability reservoirs. Moreover, ultra-low concentration KH550-MoS2 nanofluid can increase the oil displacement efficiency by 14% after water driven. This study shows the physicochemical properties of the KH550-MoS2 amphiphilic nanofluid and offers a novel high- efficiency amphiphilic nanofluid for EOR


1980 ◽  
Vol 20 (06) ◽  
pp. 459-472 ◽  
Author(s):  
G.P. Willhite ◽  
D.W. Green ◽  
D.M. Okoye ◽  
M.D. Looney

Abstract Microemulsions located in a narrow single-phase region on the phase diagram for the quaternary system consisting of nonane, isopropyl alcohol, Witco TRS 10-80 petroleum sulfonate, and brine were used to investigate the effect of phase behavior on displacement efficiency of the micellar flooding process. Microemulsion floods were conducted at reservoir rates in 4-ft (1.22-m) Berea cores containing brine and residual nonane. Two floods were made using large (1.0-PV) slugs. A third flood used a 0.1-PV slug followed by a mobility buffer of polyacrylamide. Extensive analyses of the core effluents were made for water, nonane, alcohol, and mono- and polysulfonates. An oil bank developed which broke through at 0.08 to 0.1 PV, and 48 to 700/0 of the oil was recovered in this bank which preceeded breakthrough of monosulfonate and alcohol. Coincidental with the arrival of these components of the slug, the effluent became a milky white macroemulsion which partially separated upon standing. Additional oil was recovered with the macroemulsion. Ultimate recoveries were 90 to 100% of the residual oil. Low apparent interfacial tension was observed between the emulsion and nonane. Alcohol arrived in the effluent at the same time as monosulfonate even though there was extensive adsorption of the sulfonate. Further, alcohol appeared in the effluent well after sulfonate production had ceased, indicating retention of the alcohol in the core. A qualitative model describing the displacement process was inferred from the appearance of the produced fluids and the analyses of the effluents. Introduction Surfactant flooding (micellar or microemulsion) is one of the enhanced oil recovery methods being developed to recover residual oil left after waterflooding. Two approaches to surfactant flooding have evolved in practice. In one, relatively large volumes (0.25 PV) of low-concentration surfactant solution are used to create low-tension waterfloods.1,2 Oil is mobilized by reduction of interfacial tension to levels on the order of about 10−3 dyne/ cm (10−3 mN/m). The second approach involves the application of small volumes (0.03 to 0.1 PV) of high-concentration solutions.3,4 These solutions are miscible to some extent with the formation water and/or crude oil. Consequently, miscibility between the surfactant solution and oil and/or low interfacial tensions contribute to the oil displacement efficiency. The relative importance of these mechanisms has been the subject of several papers5,6 and discussions.7,8


2015 ◽  
Vol 733 ◽  
pp. 43-46
Author(s):  
Jiang Min Zhao ◽  
Tian Ge Li

In this paper, several aspects of the improvement of the oil recovery were analyzed theoretically based on the mechanism that equi-fluidity enhances the pressure gradient. These aspects include the increase of the flow rate and the recovery rate, of the swept volume, and of the oil displacement efficiency. Also, based on the actual situation, the author designed the oil displacement method with gathered energy equi-fluidity, realizing the expectation of enhancing oil recovery with multi-slug and equi-fluidity oil displacement method.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Peike Gao ◽  
Hongbo Wang ◽  
Guanxi Li ◽  
Ting Ma

With the development of molecular ecology, increasing low-abundance microbial populations were detected in oil reservoirs. However, our knowledge about the oil recovery potential of these populations is lacking. In this study, the oil recovery potential of low-abundance Dietzia that accounts for less than 0.5% in microbial communities of a water-flooding oil reservoir was investigated. On the one hand, Dietzia sp. strain ZQ-4 was isolated from the water-flooding reservoir, and the oil recovery potential was evaluated from the perspective of metabolisms and oil-displacing test. On the other hand, the strain has alkane hydroxylase genes alkB and P450 CYP153 and can degrade hydrocarbons and produce surfactants. The core-flooding test indicated that displacing fluid with 2% ZQ-4 fermentation broth increased 18.82% oil displacement efficiency, and in situ fermentation of ZQ-4 increased 1.97% oil displacement efficiency. Furthermore, the responses of Dietzia in the reservoir accompanied by the nutrient stimulation process was investigated and showed that Dietzia in some oil production wells significantly increased in the initial phase of nutrient injection and sharply decreased along with the continuous nutrient injection. Overall, this study indicates that Dietzia sp. strain has application potential for enhancing oil recovery through an ex situ way, yet the ability of oil recovery in situ based on nutrient injection is limited.


2013 ◽  
Vol 734-737 ◽  
pp. 1272-1275
Author(s):  
Ji Hong Zhang ◽  
Zhi Ming Zhang ◽  
Xi Ling Chen ◽  
Qing Bin He ◽  
Jin Feng Li

Nanometer microspheres injection is a new deep profile control technology. Nanometer microspheres could inflate with water, resulting in plugging step by step in reservoirs, which could improve the swept efficiency in the reservoir and enhance oil recovery. By using non-homogeneous rectangular core, oil displacement efficiency experiment was conducted for studying the influence of different injection methods on the effect of injection nanometer microspheres. The experimental result shows that, compared with development effect of single-slug injection or triple-slug injection, the one of double-slug injection is better. Nanometer microspheres can enhance oil recovery significantly in medium and low permeability reservoir.


Sign in / Sign up

Export Citation Format

Share Document