Steam-Induced Wettability Alteration through Contact Angle Measurement, a Case Study in X Field, Indonesia

Author(s):  
Madi Abdullah Naser ◽  
Asep K Permadi ◽  
Wisup Bae ◽  
Won Son Ryoo ◽  
Yunsun Park ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yan-ling Wang ◽  
Li Ma ◽  
Bao-jun Bai ◽  
Guan-cheng Jiang ◽  
Jia-feng Jin ◽  
...  

Liquid condensation in the reservoir near a wellbore may kill gas production in gas-condensate reservoirs when pressure drops lower than the dew point. It is clear from investigations reported in the literature that gas production could be improved by altering the rock wettability from liquid-wetness to gas-wetness. In this paper, three different fluorosurfactants FG1105, FC911, and FG40 were evaluated for altering the wettability of sandstone rocks from liquid-wetting to gas-wetting using contact angle measurement. The results showed that FG40 provided the best wettability alteration effect with a concentration of 0.3% and FC911 at the concentration of 0.3%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ahmed S. Belal ◽  
Jehan El Nady ◽  
Azza Shokry ◽  
Shaker Ebrahim ◽  
Moataz Soliman ◽  
...  

AbstractOily water contamination has been sighted as one of the most global environmental pollution. Herein, copper hydroxide nanorods layer was constructed onto cellulosic filter paper surface cured with polydopamine, Ag nanoparticles, and Cu NPs through immersion method. This work has been aimed to produce a superhydrophobic and superoleophilic cellulosic filter paper. The structure, crystalline, and morphological properties of these modified cellulosic filter paper were investigated. Scanning electron microscope images confirmed that the modified surface was rougher compared with the pristine surface. The contact angle measurement confirmed the hydrophobic nature of these modified surfaces with a water contact angle of 169.7°. The absorption capacity was 8.2 g/g for diesel oil and the separation efficiency was higher than 99%. It was noted that the flux in the case of low viscosity solvent as n-hexane was 9663.5 Lm−2 h−1, while for the viscous oil as diesel was 1452.7 Lm−2 h−1.


2011 ◽  
Vol 306-307 ◽  
pp. 25-30 ◽  
Author(s):  
Ping Luo ◽  
Zhan Yun Huang ◽  
Di Hu Chen

In this work, titanium oxide nanorod arrays were fabricated by using the hydrothermal method on fluorine-doped tin oxide (FTO) coated glass. The diameter of the nanorods could be controlled from 150 nm to 30 nm by changing the growth parameters. The surface morphology and the structure of the samples were characterized by SEM and XRD. The wetting properties were identified by contact angle measurement. Platelet attachment was investigated to evaluate the blood compatibility of the samples with different nanoscale topographies. Results show that the nanotopographical surfaces perform outstanding blood compatibility, and the adhering platelet decreased with the increasing diameter of the nanorods.


Author(s):  
He Xu ◽  
Yan Xu ◽  
Peiyuan Wang ◽  
Hongpeng Yu ◽  
Ozoemena Anthony Ani ◽  
...  

Purpose The purpose of this paper is to explore a novel measurement approach for wheel-terrain contact angle using laser scanning sensors based on near-terrain perception. Laser scanning sensors have rarely been applied to the measurement of wheel-terrain contact angle for wheeled mobile robots (WMRs) in previous studies; however, it is an effective way to measure wheel-terrain contact angle directly with the advantages of simple, fast and high accuracy. Design/methodology/approach First, kinematics model for a WMR moving on rough terrain was developed, taking into consideration wheel slip and wheel-terrain contact angle. Second, the measurement principles of wheel-terrain contact angle using laser scanning sensors was presented, including “rigid wheel - rigid terrain” model and “rigid wheel - deformable terrain” model. Findings In the proposed approach, the measurement of wheel-terrain contact angle using laser scanning sensors was successfully demonstrated. The rationality of the approach was verified by experiments on rigid and sandy terrains with satisfactory results. Originality/value This paper proposes a novel, fast and effective wheel-terrain contact angle measurement approach for WMRs moving on both rigid and deformable terrains, using laser scanning sensors.


Author(s):  
Lixin Wang ◽  
Pan Pan ◽  
Shixing Yan ◽  
Shiyun Dong

The slippery zone of Nepenthes alata depends on its highly evolved morphology and structure to show remarkable superhydrophobicity, which has gradually become a biomimetic prototype for developing superhydrophobic materials. However, the mechanism governing this phenomenon has not been fully revealed through model analysis. In this paper, the superhydrophobicity of slippery zone is studied by contact angle measurement, morphology/structure examination and model analysis. The slippery zone causes ultrapure water droplet to produce a considerably high contact angle (155.11–158.30°), and has a micro-nano scale hierarchical structures consisting of lunate cells and wax coverings. According to the Cassie-Baxter equation and a self-defined infiltration coefficient, a model was established to analyze the effect of structure characteristic on the contact angle. Analysis result showed that the calculated contact angle (154.67–159.49°) was highly consistent with the measured contact angle, indicating that the established model can quantitatively characterize the relationship between the contact angle and the structure characteristic. Our study provides some evidences to further reveal the superhydrophobic mechanism of Nepenthes alata slippery zone, as well as inspires the biomimetic development of superhydrophobic surfaces.


SPE Journal ◽  
2022 ◽  
pp. 1-13
Author(s):  
Song Qing ◽  
Hong Chen ◽  
Li-juan Han ◽  
Zhongbin Ye ◽  
Yihao Liao ◽  
...  

Summary α-Zirconium phosphate (α-ZrP) nanocrystals were synthesized by refluxing method and subsequently exfoliated into extremely thin 2D nanosheets by tetrabutylammonium hydroxide (TBAOH) solution. Dynamic light scattering, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the size distribution and morphology of α-ZrP nanosheets. Interfacial tension (IFT) and contact angle measurement were conducted by different concentrations of α-ZrP nanosheets solutions. The results displayed that the wettability of porous media surface was altered from oleophilic to hydrophilic and the IFT decreased with the increasing of α-ZrP nanosheets concentrations. A new method was proposed to calculate the Hamaker constant for 2D α-ZrP nanosheets. The calculated results displayed that α-ZrP nanosheets were not easy to agglomerate under experimental environment and when the interaction energy barrier increased, the transport amount of α-ZrP nanosheets also increased. Coreflooding tests were also performed with various concentrations and the oil recovery efficiency increased from 33.59 to 51.26% when α-ZrP nanosheets concentrations increased from 50 to 1,000 ppm.


Sign in / Sign up

Export Citation Format

Share Document