Oil Recovery From Gas-Over-Bitumen Reservoirs: Results From the AIDROH Pilot Project in Alberta

2015 ◽  
Vol 54 (06) ◽  
pp. 351-360 ◽  
Author(s):  
Bill Hogue ◽  
Dubert Gutiérrez ◽  
Claire Hong ◽  
Jennifer Steiner ◽  
Larry Freeman
Keyword(s):  
2021 ◽  
Author(s):  
Valentina Zharko ◽  
Dmitriy Burdakov

Abstract The paper presents the results of a pilot project implementing WAG injection at the oilfield with carbonate reservoir, characterized by low efficiency of traditional waterflooding. The objective of the pilot project was to evaluate the efficiency of this enhanced oil recovery method for conditions of the specific oil field. For the initial introduction of WAG, an area of the reservoir with minimal potential risks has been identified. During the test injections of water and gas, production parameters were monitored, including the oil production rates of the reacting wells and the water and gas injection rates of injection wells, the change in the density and composition of the produced fluids. With first positive results, the pilot area of the reservoir was expanded. In accordance with the responses of the producing wells to the injection of displacing agents, the injection rates were adjusted, and the production intensified, with the aim of maximizing the effect of WAG. The results obtained in practice were reproduced in the simulation model sector in order to obtain a project curve characterizing an increase in oil recovery due to water-alternating gas injection. Practical results obtained during pilot testing of the technology show that the injection of gas and water alternately can reduce the water cut of the reacting wells and increase overall oil production, providing more efficient displacement compared to traditional waterflooding. The use of WAG after the waterflooding provides an increase in oil recovery and a decrease in residual oil saturation. The water cut of the produced liquid decreased from 98% to 80%, an increase in oil production rate of 100 tons/day was obtained. The increase in the oil recovery factor is estimated at approximately 7.5% at gas injection of 1.5 hydrocarbon pore volumes. Based on the received results, the displacement characteristic was constructed. Methods for monitoring the effectiveness of WAG have been determined, and studies are planned to be carried out when designing a full-scale WAG project at the field. This project is the first pilot project in Russia implementing WAG injection in a field with a carbonate reservoir. During the pilot project, the technical feasibility of implementing this EOR method was confirmed, as well as its efficiency in terms of increasing the oil recovery factor for the conditions of the carbonate reservoir of Eastern Siberia, characterized by high water cut and low values of oil displacement coefficients during waterflooding.


2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


1995 ◽  
Vol 1995 (1) ◽  
pp. 998-999
Author(s):  
John J. Andreasik ◽  
John P. Scambos

ABSTRACT Site evaluation resulted in the replacement of a passive sorbent system by floating oil stabilization with skimming to remove seeping petroleum products from navigable waterways. After one year, the following changes had occurred.Hazardous waste dropped from 135,000 to zero pounds per year.Two to three barrels per week of recycled oil containing less than 3 percent water were being produced.Long term liability inherent in landfill disposal of hazardous waste was eliminated.Remediation cost was reduced by 50 to 60 percent. The success of this open-water project shows a high degree of applicability for thin-layer oil recovery in settling ponds, gravity separators, and stormwater processing


Biosurfactants “U-Champ” is made by microorganisms, it could be changes the fluid characteristics which are, viscosity and Interfacial tension (IFT). In this study, will be presented the effect of Biosurfactan “U-Champ” injection into the heavy oil sample on laboratory experiment. Viscosity and IFT measurement was carried out in this experiment to analyze the characteristic changes. Coreflooding experiment also occur to measure the incremental of oil recovery. We used some of concetration of Biousrfactant “U-Champ” (1%;2,5%;5%;10%). In this experiment, we found 5% concetration of Biosurfactant “U-Champ” as the CMC value. The result of observation indicates the reduction of viscosity from 5.57 cp to 1.76 cp at 30oC, and from 1 cp to 0.95 cp at 80oC, and reduced the IFT value from 10.05 mN/m to 3.81 mN/m. Based on the result, Coreflooding experiment was occur to measure the incremental of oil recovery and obtained the increasing of recovery factor from 37,5% after waterflooding process to 81,25%. Finally, this studies feasible to continue in pilot project.


2012 ◽  
Vol 15 (01) ◽  
pp. 86-97 ◽  
Author(s):  
R.. Garmeh ◽  
M.. Izadi ◽  
M.. Salehi ◽  
J.L.. L. Romero ◽  
C.P.. P. Thomas ◽  
...  

Summary A common problem in many waterflooded oil reservoirs is early water breakthrough with high water cut through highly conductive thief zones. Thermally active polymer (TAP), which is an expandable submicron particulate of low viscosity, has been successfully used as an in-depth conformance to improve sweep efficiency of waterfloods. This paper describes the workflow to evaluate technical feasibility of this conformance technology for proper pilot-project designs supported with detailed simulation studies. Two simulation approaches have been developed to model properties of this polymer and its interaction with reservoir rock. Both methods include temperature-triggered viscosification and adsorption/retention effects. Temperature profile in the reservoir is modeled by energy balance to accurately place this polymer at the optimum location in the thief zone. The first method considers a single chemical component in the water phase. The second method is based on chemical reactions of multiple chemical components. Both simulation approaches are compared and discussed. Results show that temperature-triggered polymers can increase oil recovery by viscosification and chemical adsorption/retention, which reduces thief-zone permeability and diverts flow into unswept zones. Sensitivity analyses suggest that ultimate oil recovery and conformance control depend on the thief-zone temperature, vertical-to the horizontal-permeability ratio (Kv/Kh), thief-zone vertical location, injection concentration and slug size, oil viscosity, and chemical adsorption and its reversibility, among other factors. For high-flow-capacity thief zones and mobility ratios higher than 10, oil recoveries can be improved by increasing chemical concentration or slug size of treatments, or both. Reservoirs with low Kv/Kh (< 0.1) and high permeability contrast generally shows faster incremental recoveries than reservoirs with high Kv/Kh and strong water segregation. The presented workflow is currently used to perform in-depth conformance treatment designs in onshore and offshore fields and can be used as a reference tool to evaluate benefits of the TAP in waterflooded oil reservoirs.


2015 ◽  
Author(s):  
Bill Hogue ◽  
Dubert Gutiérrez ◽  
Claire Hong ◽  
Jennifer Steiner ◽  
Larry Freeman
Keyword(s):  

2013 ◽  
Vol 53 (2) ◽  
pp. 489
Author(s):  
Reza Ardianto

Business management of oil and gas in Pertamina State Oil enterprises was handed to one of its subsidiaries: Pertamina EP (PEP). With a vast working area of 140,000 km2, it consists of 214 fields where 80% is an old field (mature field or brown field). Most of these oil fields were discovered during Dutch colonialism. One of these fields was Rantau oil field, discovered in 1928; it is considered one of potential structure at the time. Peak oil production was achieved at 31,711 barrels of oil per day (BOPD) (wc 17.2%) in 1969, and it is still producing 2,500 BOPD from primary stage.To get better recovery from the Rantau oil field, it is necessary to identify the potential of secondary recovery water-flooding. Some screening criteria had been completed to select an appropriate method that could be applied in the Rantau field. PEP is preparing an Enhanced Oil Recovery (EOR) program to be applied in some oil fields with subsurface and surface potential consideration. The implementation was initiated by the EOR Department at PEP. The issue of the national oil production increasing program from the government has to be realised by the EOR Department at Pertamina EP. Following the national oil increasing program, management of PEP urged to increase oil production in a rapid and realistic way. As a result, the program of secondary and tertiary recovery pilot project should be conducted simultaneously by the EOR Department on some of the fields that have passed their peak. On the other hand, PEP has only limited geology, geophysics, reservoir, and production (GGRP) data, and most of the oil fields have been producing since 1930s. The conditions that have to be dealt with are as follows: production from the existing field is declining, data is collected and interpreted during a long period, huge amounts of production data, and reservoir model and simulation do not exist and are not frequently updated. Based on this, the planning of EOR struggled due to length of time needed versus the need for quick development. It has become much more of a challenge for the team consisting of integrated geophysics, geology, reservoir, production, process facility, project management and economic evaluation. This extended abstract presents the term of managing limited GGRP data that contributes to the successful pilot waterflood project in the Rantau field. It also explains the uses of limited subsurface GGRP data to overcome the uncertainty for planning of the waterflood pilot project in the Rantau field, as a part of planning using limited data.


2021 ◽  
Author(s):  
Yuri Mikhailovich Trushin ◽  
Anton Sergeevich Aleshchenko ◽  
Oleg Nikolaevich Zoshchenko ◽  
Mark Suleimanovich Arsamakov ◽  
Ivan Vasilevich Tkachev ◽  
...  

Abstract The paper considers the use of a surfactant-polymer composition for the mobilization of light paraffinic oil from the D3-III carbonate reservoir at a reservoir temperature of 62°C, as well as the results of its tests in field conditions. Earlier, the composition showed its effectiveness on model carbonate cores with salinity from current (50-80 g/l) to reservoir (up to 170 g/l), in the presence of surfactants, type III microemulsions according to Winsor with oil were obtained. Based on the results of the filtration experiments performed on our own core from the productive formation D3-III, an increase in the displacement efficiency of surfactant-polymer compositions compared to water was obtained 11–14% (with a total surfactant concentration of 1%), irreversible surfactant losses in water-saturated rock–up to 0, 38 mg/g. Displacement efficiency after water and surfactant-polymer composition flooding was also estimated in the field conditions using SWCTT; its results were interpreted by various methods (analytical, in a hydrodynamic simulator), and also compared with laboratory results. Within a single-well tracer test, an assessment of the residual saturation after water filtration and injection of a surfactant-polymer composition was carried out under the following conditions: the target research radius is 3.5 m; porosity 10%, effective reservoir thickness 38 m. Based on the results of SWCTT, an increase in the displacement efficiency of 16.7% was obtained in comparison with water displacement (total surfactant concentration 1%) using an analytical method of interpretation. The adaptation of the SWCTT results on the hydrodynamic model was carried out, the most influencing parameters on the quality of adaptation were determined. The selection and justification of a pilot area for a multi-well pilot project was carried out, a sector hydrodynamic model of the site was built, and calculations were made to assess additional oil production.


Geophysics ◽  
1989 ◽  
Vol 54 (9) ◽  
pp. 1082-1090 ◽  
Author(s):  
N. D. Bregman ◽  
P. A. Hurley ◽  
G. F. West

A crosshole seismic experiment was conducted to locate and characterize a firefront at an enhanced oil recovery (EOR) pilot project. The reservoir engineers involved in the project were interested in finding out why the burnfront apparently had stalled between two wells 51 m apart. In a noisy producing environment, good quality seismic data were recorded at depths ranging from 710 to 770 m. The frequency range of the data, 500 to 1500 Hz, allows resolution of the velocity structure on a scale of several meters. The moveout of first arrivals indicates that there are large velocity variations in the study region; a high‐amplitude, late arriving channel wave points to the existence of a low‐velocity channel connecting the boreholes. Using an iterative, nonlinear scheme which incorporates curved ray tracing and least‐squares inversion in each iteration, the first‐arrival times were inverted to obtain a two‐dimensional model of the compressional seismic velocity between the boreholes. The velocities range from 1.5 km/s to 3.2 km/s, with a low‐velocity channel at the depth of the producing oil sand. Sonic, core, and temperature logs lead us to conclude that the extremely low velocities in the model are probably due to gases produced by the burn. Increased velocities in an adjacent shale may be a secondary effect of the burn. The velocity model also indicates an irregularity in the topography at the bottom of the reservoir, an irregularity which may be responsible for blocking the progress of the burnfront.


Sign in / Sign up

Export Citation Format

Share Document