Thermally Active Polymer To Improve Sweep Efficiency of Waterfloods: Simulation and Pilot Design Approaches

2012 ◽  
Vol 15 (01) ◽  
pp. 86-97 ◽  
Author(s):  
R.. Garmeh ◽  
M.. Izadi ◽  
M.. Salehi ◽  
J.L.. L. Romero ◽  
C.P.. P. Thomas ◽  
...  

Summary A common problem in many waterflooded oil reservoirs is early water breakthrough with high water cut through highly conductive thief zones. Thermally active polymer (TAP), which is an expandable submicron particulate of low viscosity, has been successfully used as an in-depth conformance to improve sweep efficiency of waterfloods. This paper describes the workflow to evaluate technical feasibility of this conformance technology for proper pilot-project designs supported with detailed simulation studies. Two simulation approaches have been developed to model properties of this polymer and its interaction with reservoir rock. Both methods include temperature-triggered viscosification and adsorption/retention effects. Temperature profile in the reservoir is modeled by energy balance to accurately place this polymer at the optimum location in the thief zone. The first method considers a single chemical component in the water phase. The second method is based on chemical reactions of multiple chemical components. Both simulation approaches are compared and discussed. Results show that temperature-triggered polymers can increase oil recovery by viscosification and chemical adsorption/retention, which reduces thief-zone permeability and diverts flow into unswept zones. Sensitivity analyses suggest that ultimate oil recovery and conformance control depend on the thief-zone temperature, vertical-to the horizontal-permeability ratio (Kv/Kh), thief-zone vertical location, injection concentration and slug size, oil viscosity, and chemical adsorption and its reversibility, among other factors. For high-flow-capacity thief zones and mobility ratios higher than 10, oil recoveries can be improved by increasing chemical concentration or slug size of treatments, or both. Reservoirs with low Kv/Kh (< 0.1) and high permeability contrast generally shows faster incremental recoveries than reservoirs with high Kv/Kh and strong water segregation. The presented workflow is currently used to perform in-depth conformance treatment designs in onshore and offshore fields and can be used as a reference tool to evaluate benefits of the TAP in waterflooded oil reservoirs.

SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 413-430
Author(s):  
Zhanxi Pang ◽  
Lei Wang ◽  
Zhengbin Wu ◽  
Xue Wang

Summary Steam-assisted gravity drainage (SAGD) and steam and gas push (SAGP) are used commercially to recover bitumen from oil sands, but for thin heavy-oil reservoirs, the recovery is lower because of larger heat losses through caprock and poorer oil mobility under reservoir conditions. A new enhanced-oil-recovery (EOR) method, expanding-solvent SAGP (ES-SAGP), is introduced to develop thin heavy-oil reservoirs. In ES-SAGP, noncondensate gas and vaporizable solvent are injected with steam into the steam chamber during SAGD. We used a 3D physical simulation scale to research the effectiveness of ES-SAGP and to analyze the propagation mechanisms of the steam chamber during ES-SAGP. Under the same experimental conditions, we conducted a contrast analysis between SAGP and ES-SAGP to study the expanding characteristics of the steam chamber, the sweep efficiency of the steam chamber, and the ultimate oil recovery. The experimental results show that the steam chamber gradually becomes an ellipse shape during SAGP. However, during ES-SAGP, noncondensate gas and a vaporizable solvent gather at the reservoir top to decrease heat losses, and oil viscosity near the condensate layer of the steam chamber is largely decreased by hot steam and by solvent, making the boundary of the steam chamber vertical and gradually a similar, rectangular shape. As in SAGD, during ES-SAGP, the expansion mechanism of the steam chamber can be divided into three stages: the ascent stage, the horizontal-expansion stage, and the descent stage. In the ascent stage, the time needed is shorter during ES-SAGP than during SAGP. However, the other two stages take more time during nitrogen, solvent, and steam injection to enlarge the cross-sectional area of the bottom of the steam chamber. For the conditions in our experiments, when the instantaneous oil/steam ratio is lower than 0.1, the corresponding oil recovery is 51.11%, which is 7.04% higher than in SAGP. Therefore, during ES-SAGP, not only is the volume of the steam chamber sharply enlarged, but the sweep efficiency and the ultimate oil recovery are also remarkably improved.


2013 ◽  
Vol 275-277 ◽  
pp. 496-501
Author(s):  
Fu Qing Yuan ◽  
Zhen Quan Li

According to the geological parameters of Shengli Oilfield, sweep efficiency of chemical flooding was analyzed according to injection volume, injection-production parameters of polymer flooding or surfactant-polymer compound flooding. The orthogonal design method was employed to select the important factors influencing on expanding sweep efficiency by chemical flooding. Numerical simulation method was utilized to analyze oil recovery and sweep efficiency of different flooding methods, such as water flooding, polymer flooding and surfactant-polymer compound flooding. Finally, two easy calculation models were established to calculate the expanding degree of sweep efficiency by polymer flooding or SP compound flooding than water flooding. The models were presented as the relationships between geological parameters, such as effective thickness, oil viscosity, porosity and permeability, and fluid parameters, such as polymer-solution viscosity and oil-water interfacial tension. The precision of the two models was high enough to predict sweep efficiency of polymer flooding or SP compound flooding.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Zhanxi Pang ◽  
Peng Qi ◽  
Fengyi Zhang ◽  
Taotao Ge ◽  
Huiqing Liu

Heavy oil is an important hydrocarbon resource that plays a great role in petroleum supply for the world. Co-injection of steam and flue gas can be used to develop deep heavy oil reservoirs. In this paper, a series of gas dissolution experiments were implemented to analyze the properties variation of heavy oil. Then, sand-pack flooding experiments were carried out to optimize injection temperature and injection volume of this mixture. Finally, three-dimensional (3D) flooding experiments were completed to analyze the sweep efficiency and the oil recovery factor of flue gas + steam flooding. The role in enhanced oil recovery (EOR) mechanisms was summarized according to the experimental results. The results show that the dissolution of flue gas in heavy oil can largely reduce oil viscosity and its displacement efficiency is obviously higher than conventional steam injection. Flue gas gradually gathers at the top to displace remaining oil and to decrease heat loss of the reservoir top. The ultimate recovery is 49.49% that is 7.95% higher than steam flooding.


2021 ◽  
Author(s):  
Ali Reham Al-Jabri ◽  
Rouhollah Farajzadeh ◽  
Abdullah Alkindi ◽  
Rifaat Al-Mjeni ◽  
David Rousseau ◽  
...  

Abstract Heavy oil reservoirs remain challenging for surfactant-based EOR. In particular, selecting fine-tuned and cost effective chemical formulations requires extensive laboratory work and a solid methodology. This paper reports a laboratory feasibility study, aiming at designing a surfactant-polymer pilot for a heavy oil field with an oil viscosity of ~500cP in the South of Sultanate of Oman, where polymer flooding has already been successfully trialed. A major driver was to design a simple chemical EOR method, to minimize the risk of operational issues (e.g. scaling) and ensure smooth logistics on the field. To that end, a dedicated alkaline-free and solvent-free surfactant polymer (SP) formulation has been designed, with its sole three components, polymer, surfactant and co-surfactant, being readily available industrial chemicals. This part of the work has been reported in a previous paper. A comprehensive set of oil recovery coreflood tests has then been carried out with two objectives: validate the intrinsic performances of the SP formulation in terms of residual oil mobilization and establish an optimal injection strategy to maximize oil recovery with minimal surfactant dosage. The 10 coreflood tests performed involved: Bentheimer sandstone, for baseline assessments on large plugs with minimized experimental uncertainties; homogeneous artificial sand and clays granular packs built to have representative mineralogical composition, for tuning of the injection parameters; native reservoir rock plugs, unstacked in order to avoid any bias, to validate the injection strategy in fully representative conditions. All surfactant injections were performed after long polymer injections, to mimic the operational conditions in the field. Under injection of "infinite" slugs of the SP formulation, all tests have led to tertiary recoveries of more than 88% of the remaining oil after waterflood with final oil saturations of less than 5%. When short slugs of SP formulation were injected, tertiary recoveries were larger than 70% ROIP with final oil saturations less than 10%. The final optimized test on a reservoir rock plug, which was selected after an extensive review of the petrophysical and mineralogical properties of the available reservoir cores, led to a tertiary recovery of 90% ROIP with a final oil saturation of 2%, after injection of 0.35 PV of SP formulation at 6 g/L total surfactant concentration, with surfactant losses of 0.14 mg-surfactant/g(rock). Further optimization will allow accelerating oil bank arrival and reducing the large PV of chase polymer needed to mobilize the liberated oil. An additional part of the work consisted in generating the parameters needed for reservoir scale simulation. This required dedicated laboratory assays and history matching simulations of which the results are presented and discussed. These outcomes validate, at lab scale, the feasibility of a surfactant polymer process for the heavy oil field investigated. As there has been no published field test of SP injection in heavy oil, this work may also open the way to a new range of field applications.


2021 ◽  
Author(s):  
Jasmine Shivani Medina ◽  
Iomi Dhanielle Medina ◽  
Gao Zhang

Abstract The phenomenon of higher than expected production rates and recovery factors in heavy oil reservoirs captured the term "foamy oil," by researchers. This is mainly due to the bubble filled chocolate mousse appearance found at wellheads where this phenomenon occurs. Foamy oil flow is barely understood up to this day. Understanding why this unusual occurrence exists can aid in the transfer of principles to low recovery heavy oil reservoirs globally. This study focused mainly on how varying the viscosity and temperature via pressure depletion lab tests affected the performance of foamy oil production. Six different lab-scaled experiments were conducted, four with varying temperatures and two with varying viscosities. All experiments were conducted using lab-scaled sand pack pressure depletion tests with the same initial gas oil ratio (GOR). The first series of experiments with varying temperatures showed that the oil recovery was inversely proportional to elevated temperatures, however there was a directly proportional relationship between gas recovery and elevation in temperature. A unique observation was also made, during late-stage production, foamy oil recovery reappeared with temperatures in the 45-55°C range. With respect to the viscosities, a non-linear relationship existed, however there was an optimal region in which the live-oil viscosity and foamy oil production seem to be harmonious.


SPE Journal ◽  
2008 ◽  
Vol 13 (04) ◽  
pp. 432-439 ◽  
Author(s):  
Edward J. Lewis ◽  
Eric Dao ◽  
Kishore K. Mohanty

Summary Evaluation and improvement of sweep efficiency are important for miscible displacement of medium-viscosity oils. A high-pressure quarter-five-spot cell was used to conduct multicontact miscible (MCM) water-alternating-gas (WAG) displacements at reservoir conditions. A dead reservoir oil (78 cp) was displaced by ethane. The minimum miscibility pressure (MMP) for ethane with the reservoir oil is approximately 4.14 MPa (600 psi). Gasflood followed by waterflood improves the oil recovery over waterflood alone in the quarter five-spot. As the pressure decreases, the gasflood oil recovery increases slightly in the pressure range of 4.550-9.514 MPa (660-1,380 psi) for this undersaturated viscous oil. WAG improves the sweep efficiency and oil recovery in the quarter five-spot over the continuous gas injection. WAG injection slows down gas breakthrough. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly more oil can be recovered with just 0.1 pore volume (PV) solvent (and water) injection than with waterflood alone. Use of a horizontal production well lowers the sweep efficiency over the vertical production well during WAG injection. Sweep efficiency is higher for the nine-spot pattern than for the five-spot pattern during gas injection. Sweep efficiency during WAG injection increases with the WAG ratio in the five-spot model. Introduction As the light-oil reservoirs get depleted, there is increasing interest in producing more-viscous-oil reservoirs. Thermal techniques are appropriate for heavy-oil reservoirs. But gasflooding can play an important role in medium-viscosity-oil (30-300 cp) reservoirs and is the subject of this paper. Roughly 20 billion to 25 billion bbl of medium-weight- to heavy-weight-oil deposits are estimated in the North Slope of Alaska. Approximately 10 billion to 12 billion bbl exist in West Sak/Schrader Bluff formation alone (McGuire et al. 2005). Miscible gasflooding has been proved to be a cost-effective enhanced oil recovery technique. There are approximately 80 gasflooding projects (CO2, flue gas, and hydrocarbon gas) in the US and approximately 300,000 B/D is produced from gasflooding, mostly from light-oil reservoirs (Moritis 2004). The recovery efficiency [10-20% of the original oil in place (OOIP)] and solvent use (3-12 Mcf/bbl) need to be improved. The application of miscible and immiscible gasflooding needs to be extended to medium-viscosity-oil reservoirs. McGuire et al. (2005) have proposed an immiscible WAG flooding process, called viscosity-reduction WAG, for North Slope medium-visocisty oils. Many of these oils are depleted in their light-end hydrocarbons C7-C13. When a mixture of methane and natural gas liquid is injected, the ethane and components condense into the oil and decrease the viscosity of oil, making it easier for the water to displace the oil. From reservoir simulation, this process is estimated to enhance oil recovery compared to waterflood from 19 to 22% of the OOIP, which still leaves nearly 78% of the OOIP. Thus, further research should be directed at improving the recovery efficiency of these processes for viscous-oil reservoirs. Recovery efficiency depends on microscopic displacement efficiency and sweep efficiency. Microscopic displacement efficiency depends on pressure, (Dindoruk et al. 1992; Wang and Peck 2000) composition of the solvent and oil (Stalkup 1983; Zick 1986), and small-core-scale heterogeneity (Campbell and Orr 1985; Mohanty and Johnson 1993). Sweep efficiency of a miscible flood depends on mobility ratio (Habermann 1960; Mahaffey et al. 1966; Cinar et al. 2006), viscous-to-gravity ratio (Craig et al. 1957; Spivak 1974; Withjack and Akervoll 1988), transverse Peclet number (Pozzi and Blackwell 1963), well configuration, and reservoir heterogeneity, (Koval 1963; Fayers et al. 1992) in general. The effect of reservoir heterogeneity is difficult to study at the laboratory scale and is addressed mostly by simulation (Haajizadeh et al. 2000; Jackson et al. 1985). Most of the laboratory sweep-efficiency studies (Habermann 1960; Mahaffey et al. 1966; Jackson et al. 1985; Vives et al. 1999) have been conducted with first-contact fluids or immiscible fluids at ambient pressure/temperature and may not be able to respresent the displacement physics of multicontact fluids at reservoir conditions. In fact, four methods are proposed for sweep improvement in gasflooding: WAG (Lin and Poole 1991), foams (Shan and Rossen 2002), direct thickeners (Xu et al. 2003), and dynamic-profile control in wells (McGuire et al. 1998). To evaluate any sweep-improvement methods, one needs controlled field testing. Field tests generally are expensive and not very controlled; two different tests cannot be performed starting with identical initial states, and, thus, results are often inconclusive. Field-scale modeling of compositionally complex processes can be unreliable because of inadequate representation of heterogeneity and process complexity in existing numerical simulators. There is a need to conduct laboratory sweep-efficiency studies with the MCM fluids at reservoir conditions to evaluate various sweep-improvement techniques. Reservoir-conditions laboratory tests can be used to calibrate numerical simulators and evaluate qualitative changes in sweep efficiency. We have built a high-pressure quarter-five-spot model where reservoir-conditions multicontact WAG floods can be conducted and evaluated (Dao et al. 2005). The goal of this paper is to evaluate various WAG strategies for a model oil/multicontact solvent in this high-pressure laboratory cell. In the next section, we outline our experimental techniques. The results are summarized in the following section.


1972 ◽  
Vol 12 (02) ◽  
pp. 143-155 ◽  
Author(s):  
E.L. Claridge

Abstract A new correlation bas been developed for estimating oil recovery in unstable miscible five-spot pattern floods. It combines existing methods of predicting areal coverage and linear displacement efficiency and was used to calculate oil recovery for a series of assumed slug sizes in a live-spot CO2 slug-waterflood pilot test. The economic optimum slug size varies with CO2 cost; at anticipated CO2 costs the pilot would generate an attractive profit if performance is as predicted Introduction Selection of good field prospects for application of oil recovery processes other than waterflooding is often difficult. The principal reason is that other proposed displacing agents are far more costly proposed displacing agents are far more costly than water and usually sweep a lesser fraction of the volume of an oil reservoir (while displacing oil more efficiently from this fraction). Such agents must be used in limited amounts as compared with water; and this amount must achieve an appreciable additional oil recovery above waterflooding recovery. For these reasons, there is in general much less economic margin for engineering error in processes other than waterflooding. The general characteristics of the various types of supplemental recovery processes are well known, and adequate choices can be made of processes to be considered in more detail with respect to a given field. Comparative estimates must then be made of process performance and costs in order to narrow the choice. A much more detailed, definitive process-and-economic evaluation is eventually process-and-economic evaluation is eventually required of the chosen process before an executive decision can be made to commit large amounts of money to such projects. It is in the area between first choice and final engineering evaluation that this work applies. A areal cusping and vertical coning into producing wells. These effects can be seated by existing "desk-drawer" correlation which can confirm or deny the engineer's surmise that he has an appropriate match of recovery process and oil reservoir characteristics is of considerable value in determining when to undertake the costly and often manpower-consuming task of a definitive process-and-economic evaluation. process-and-economic evaluation. An examination of the nature of the developed crude oil resources in the U.S. indicates that the majority of the crude oil being produced is above 35 degrees API gravity and exists in reservoirs deeper than 4,000 ft. The combination of hydrostatic pressure on these oil reservoirs, the natural gas usually present in the crude oil in proportion to this pressure, the reservoir temperatures typically found, and the distribution of molecular sizes and types in the crude oil corresponding to the API gravity results in the fact that, in the majority of cases, the in-place crude oil viscosity was originally no more than twice that of water. A large proportion of these oil reservoirs have undergone pressure decline, gas evolution and consequent increase in crude oil viscosity. However, an appreciable proportion are still at such a pressure and proportion are still at such a pressure and temperature that miscibility can be readily attained with miscible drive agents such as propane or carbon dioxide, and the viscosity of the crude oil is such that the mobility of these miscible drive agents is no more than 50 time s that of the crude oil. Under these circumstances, a possible candidate situation for the miscible-drive type of process may exist. process may exist. Supposing that such a situation is under consideration, the next question is: what specific miscible drive process, and how should it be designed to operate? In some cases, the answer is clear: when the reservoir has a high degree of vertical communication (high permeability and continuity of the permeable, oil-bearing pore space in the vertical direction), then a gravity-stabilized miscible flood is the preferred mode of operation; and the particular drive agent or agents can be chosen on the basis of miscibility requirements, availability and cost. SPEJ P. 143


1984 ◽  
Vol 24 (01) ◽  
pp. 33-37 ◽  
Author(s):  
Gary E. Jenneman ◽  
Roy M. Knapp ◽  
Michael J. McInerney ◽  
D.E. Menzie ◽  
D.E. Revus

Abstract Experiments were conducted to study the feasibility of using microorganisms in EOR, particularly for the correction of permeability variation. The use of microorganisms requires the ability to transport viable cells as well as the nutrients required for cellular growth through reservoir formations. Nutrients such is glucose, peptone-protein, and phosphate and ammonium ions were transported through brine-saturated Berea sand-stone cores in amounts sufficient to suppose microbial growth. Viable bacterial cells were transported to through sandstone cores of 170-md permeability. Less than1% of the influent cell concentration was recovered in the effluent, indicating a high degree of cell retention inside the core. The addition of nutrients to these cores and subsequent incubation to allow for microbial growth resulted in permeability reductions of 60 to 80%. These data show that the growth of microorganisms significantly reduces the permeability of porous rock. permeability of porous rock. Introduction The major objective of this study is to investigate experimentally thepotential use of microorganisms in oil recovery. In this investigation, potential use of microorganisms in oil recovery. In this investigation, petroleum engineering and microbiology are used to understand the physical petroleum engineering and microbiology are used to understand the physical mechanisms of oil recovery by bacterial processes. One process under study is permeability reduction by the in-situ growth of bacteria as a proposed solution to reservoir heterogeneity problems, specifically permeability variation, that detrimentally affect the performance of waterflood and EOR projects. Numerous investigation have experimentally studied the plugging projects. Numerous investigation have experimentally studied the plugging effect of bacteria on Berea sandstone cores. However, their work dealt with injectivity problems resulting from wellbore plugging caused by bacteria. Theory Reservoir heterogeneity has a significant effect on the oil recovery efficiency of a waterflood or EOR process. The recovery efficiency ( )may be defined as a combination of a microscopic oil-displacement efficiency ( ) and volumetric sweep efficiency ( ). ............................(1) Permeability variation greatly influences the volumetric sweep efficiency Permeability variation greatly influences the volumetric sweep efficiency and its two-dimensional components of areal and vertical sweep efficiency. Reservoir selective plugging techniques developed in the past to modify permeability variations included a wide variety of plugging agents. The permeability variations included a wide variety of plugging agents. The application and success of these methods were limited. Meehan et al. demonstrated that additional oil recovery is possible if the channeling water in a waterflood can be immobilized. The residual oil saturation (ROS) remaining after waterflooding is apotential target for the application of a reservoir selective plugging potential target for the application of a reservoir selective plugging process using the in-situ growth of bacteria. The theoretical concept of process using the in-situ growth of bacteria. The theoretical concept of this process involves the introduction of viable bacteria in the aqueous displacing fluid to be injected into the high- permeability water-sweptzones. The selectivity is based on the experimental evidence that bacteria more readily, plug high-permeability zones since these zones receive a greater proportion of the fluid flow. Once the bacteria are in place, a designed volume of nutrients may be injected into the reservoir to support in-situ metabolism of the bacteria. The result of this metabolism is the production of cellular mass capable of initiating physical plugging. The production of cellular mass capable of initiating physical plugging. The physical plugging results in a reduction of original permeability mid can physical plugging results in a reduction of original permeability mid can be expressed as the ratio of impaired to original permeability. The resumption of injection will result in a diversion of the displacing fluid from plugged high-permeability zones to unswept zones and, thus, improvesweep efficiency. This reduces the ROS, decreases WOR, and increases theultimate recovery of oil in place. The success of an in-situ microbial plugging process depends on the ability to (1) transport the microorganisms plugging process depends on the ability to (1) transport the microorganisms throughout the reservoir rock stratum, (2) transport nutrients required for microbial growth and metabolism and (3) reduce the apparent permeability of the reservoir rock stratum as a result of microbial growth and metabolism. Description of Equipment and Processes Berea sandstone cores obtained from Cleveland Quarrics (Amherst, OH) werecut into cylinders 2 × 8 in. [5 × 20 cm] with a coring device. Cores were either steamcleaned for 2 weeks and then dried or used as received. Each core was coated with epoxy, cast in a resin mold (Evercoat Fiberglassresin), and cut into specified lengths. SPEJ p. 33


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5735
Author(s):  
Ali Telmadarreie ◽  
Japan J Trivedi

Enhanced oil recovery (EOR) from heavy oil reservoirs is challenging. High oil viscosity, high mobility ratio, inadequate sweep, and reservoir heterogeneity adds more challenges and severe difficulties during any EOR method. Foam injection showed potential as an EOR method for challenging and heterogeneous reservoirs containing light oil. However, the foams and especially polymer enhanced foams (PEF) for heavy oil recovery have been less studied. This study aims to evaluate the performance of CO2 foam and CO2 PEF for heavy oil recovery and CO2 storage by analyzing flow through porous media pressure profile, oil recovery, and CO2 gas production. Foam bulk stability tests showed higher stability of PEF compared to that of surfactant-based foam both in the absence and presence of heavy crude oil. The addition of polymer to surfactant-based foam significantly improved its dynamic stability during foam flow experiments. CO2 PEF propagated faster with higher apparent viscosity and resulted in more oil recovery compared to that of CO2 foam injection. The visual observation of glass column demonstrated stable frontal displacement and higher sweep efficiency of PEF compared to that of conventional foam. In the fractured rock sample, additional heavy oil recovery was obtained by liquid diversion into the matrix area rather than gas diversion. Aside from oil production, the higher stability of PEF resulted in more gas storage compared to conventional foam. This study shows that CO2 PEF could significantly improve heavy oil recovery and CO2 storage.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6215
Author(s):  
Manoj Kumar Valluri ◽  
Jimin Zhou ◽  
Srikanta Mishra ◽  
Kishore Mohanty

Process understanding of CO2 injection into a reservoir is a crucial step for planning a CO2 injection operation. CO2 injection was investigated for Ohio oil reservoirs which have access to abundant CO2 from local coal-fired power plants and industrial facilities. In a first of its kind study in Ohio, lab-scale core characterization and flooding experiments were conducted on two of Ohio’s most prolific oil and gas reservoirs—the Copper Ridge dolomite and Clinton sandstone. Reservoir properties such as porosity, permeability, capillary pressure, and oil–water relative permeability were measured prior to injecting CO2 under and above the minimum miscibility pressure (MMP) of the reservoir. These evaluations generated reservoir rock-fluid data that are essential for building reservoir models in addition to providing insights on injection below and above the MMP. Results suggested that the two Ohio reservoirs responded positively to CO2 injection and recovered additional oil. Copper Ridge reservoir’s incremental recovery ranged between 20% and 50% oil originally in place while that of Clinton sandstone ranged between 33% and 36% oil originally in place. It was also deduced that water-alternating-gas injection schemes can be detrimental to production from tight reservoirs such as the Clinton sandstone.


Sign in / Sign up

Export Citation Format

Share Document