Capillary Pressure, Fluid Distribution, and Oil Recovery in Preserved Middle Bakken Cores

Author(s):  
Somayeh Karimi ◽  
Hossein Kazemi ◽  
Gary A. Simpson
Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3385 ◽  
Author(s):  
Abdulrauf R. Adebayo ◽  
Abubakar Isah ◽  
Mohamed Mahmoud ◽  
Dhafer Al-Shehri

Laboratory measurements of capillary pressure (Pc) and the electrical resistivity index (RI) of reservoir rocks are used to calibrate well logging tools and to determine reservoir fluid distribution. Significant studies on the methods and factors affecting these measurements in rocks containing oil, gas, and water are adequately reported in the literature. However, with the advent of chemical enhanced oil recovery (EOR) methods, surfactants are mixed with injection fluids to generate foam to enhance the gas injection process. Foam is a complex and non-Newtonian fluid whose behavior in porous media is different from conventional reservoir fluids. As a result, the effect of foam on Pc and the reliability of using known rock models such as the Archie equation to fit experimental resistivity data in rocks containing foam are yet to be ascertained. In this study, we investigated the effect of foam on the behavior of both Pc and RI curves in sandstone and carbonate rocks using both porous plate and two-pole resistivity methods at ambient temperature. Our results consistently showed that for a given water saturation (Sw), the RI of a rock increases in the presence of foam than without foam. We found that, below a critical Sw, the resistivity of a rock containing foam continues to rise rapidly. We argue, based on knowledge of foam behavior in porous media, that this critical Sw represents the regime where the foam texture begins to become finer, and it is dependent on the properties of the rock and the foam. Nonetheless, the Archie model fits the experimental data of the rocks but with resulting saturation exponents that are higher than conventional gas–water rock systems. The degree of variation in the saturation exponents between the two fluid systems also depends on the rock and fluid properties. A theory is presented to explain this phenomenon. We also found that foam affects the saturation exponent in a similar way as oil-wet rocks in the sense that they decrease the cross-sectional area of water available in the pores for current flow. Foam appears to have competing and opposite effects caused by the presence of clay, micropores, and conducting minerals, which tend to lower the saturation exponent at low Sw. Finally, the Pc curve is consistently lower in foam than without foam for the same Sw.


2001 ◽  
Vol 4 (06) ◽  
pp. 455-466 ◽  
Author(s):  
A. Graue ◽  
T. Bognø ◽  
B.A. Baldwin ◽  
E.A. Spinler

Summary Iterative comparison between experimental work and numerical simulations has been used to predict oil-recovery mechanisms in fractured chalk as a function of wettability. Selective and reproducible alteration of wettability by aging in crude oil at an elevated temperature produced chalk blocks that were strongly water-wet and moderately water-wet, but with identical mineralogy and pore geometry. Large scale, nuclear-tracer, 2D-imaging experiments monitored the waterflooding of these blocks of chalk, first whole, then fractured. This data provided in-situ fluid saturations for validating numerical simulations and evaluating capillary pressure- and relative permeability-input data used in the simulations. Capillary pressure and relative permeabilities at each wettability condition were measured experimentally and used as input for the simulations. Optimization of either Pc-data or kr-curves gave indications of the validity of these input data. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations than matching production profiles only. Introduction Laboratory waterflood experiments, with larger blocks of fractured chalk where the advancing waterfront has been imaged by a nuclear tracer technique, showed that changing the wettability conditions from strongly water-wet to moderately water-wet had minor impact on the the oil-production profiles.1–3 The in-situ saturation development, however, was significantly different, indicating differences in oil-recovery mechanisms.4 The main objective for the current experiments was to determine the oil-recovery mechanisms at different wettability conditions. We have reported earlier on a technique that reproducibly alters wettability in outcrop chalk by aging the rock material in stock-tank crude oil at an elevated temperature for a selected period of time.5 After applying this aging technique to several blocks of chalk, we imaged waterfloods on blocks of outcrop chalk at different wettability conditions, first as a whole block, then when the blocks were fractured and reassembled. Earlier work reported experiments using an embedded fracture network,4,6,7 while this work also studied an interconnected fracture network. A secondary objective of these experiments was to validate a full-field numerical simulator for prediction of the oil production and the in-situ saturation dynamics for the waterfloods. In this process, the validity of the experimentally measured capillary pressure and relative permeability data, used as input for the simulator, has been tested at strongly water-wet and moderately water-wet conditions. Optimization of either Pc data or kr curves for the chalk matrix in the numerical simulations of the whole blocks at different wettabilities gave indications of the data's validity. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations of the fractured blocks, in which only the fracture representation was a variable. Experimental Rock Material and Preparation. Two chalk blocks, CHP8 and CHP9, approximately 20×12×5 cm thick, were obtained from large pieces of Rørdal outcrop chalk from the Portland quarry near Ålborg, Denmark. The blocks were cut to size with a band saw and used without cleaning. Local air permeability was measured at each intersection of a 1×1-cm grid on both sides of the blocks with a minipermeameter. The measurements indicated homogeneous blocks on a centimeter scale. This chalk material had never been contacted by oil and was strongly water-wet. The blocks were dried in a 90°C oven for 3 days. End pieces were mounted on each block, and the whole assembly was epoxy coated. Each end piece contained three fittings so that entering and exiting fluids were evenly distributed with respect to height. The blocks were vacuum evacuated and saturated with brine containing 5 wt% NaCl+3.8 wt% CaCl2. Fluid data are found in Table 1. Porosity was determined from weight measurements, and the permeability was measured across the epoxy-coated blocks, at 2×10–3 µm2 and 4×10–3 µm2, for CHP8 and CHP9, respectively (see block data in Table 2). Immobile water saturations of 27 to 35% pore volume (PV) were established for both blocks by oilflooding. To obtain uniform initial water saturation, Swi, oil was injected alternately at both ends. Oilfloods of the epoxy-coated block, CHP8, were carried out with stock-tank crude oil in a heated pressure vessel at 90°C with a maximum differential pressure of 135 kPa/cm. CHP9 was oilflooded with decane at room temperature. Wettability Alteration. Selective and reproducible alteration of wettability, by aging in crude oil at elevated temperatures, produced a moderately water-wet chalk block, CHP8, with similar mineralogy and pore geometry to the untreated strongly water-wet chalk block CHP9. Block CHP8 was aged in crude oil at 90°C for 83 days at an immobile water saturation of 28% PV. A North Sea crude oil, filtered at 90°C through a chalk core, was used to oilflood the block and to determine the aging process. Two twin samples drilled from the same chunk of chalk as the cut block were treated similar to the block. An Amott-Harvey test was performed on these samples to indicate the wettability conditions after aging.8 After the waterfloods were terminated, four core plugs were drilled out of each block, and wettability measurements were conducted with the Amott-Harvey test. Because of possible wax problems with the North Sea crude oil used for aging, decane was used as the oil phase during the waterfloods, which were performed at room temperature. After the aging was completed for CHP8, the crude oil was flushed out with decahydronaphthalene (decalin), which again was flushed out with n-decane, all at 90°C. Decalin was used as a buffer between the decane and the crude oil to avoid asphalthene precipitation, which may occur when decane contacts the crude oil.


1965 ◽  
Vol 5 (01) ◽  
pp. 15-24 ◽  
Author(s):  
Norman R. Morrow ◽  
Colin C. Harris

Abstract The experimental points which describe capillary pressure curves are determined at apparent equilibria which are observed after hydrodynamic flow has ceased. For most systems, the time required to obtain equalization of pressure throughout the discontinuous part of a phase is prohibitive. To permit experimental points to be described as equilibria, a model of capillary behavior is proposed where mass transfer is restricted to bulk fluid flow. Model capillary pressure curves follow if the path described by such points is independent of the rate at which the saturation was changed to attain a capillary pressure point. A modified suction potential technique is used to study cyclic relationships between capillary pressure and moisture content for a porous mass. The time taken to complete an experiment was greatly reduced by using small samples. Introduction Capillary retention of liquid by porous materials has been investigated in the fields of hydrology, soil science, oil reservoir engineering, chemical engineering, soil mechanics, textiles, paper making and building materials. In studies of the immiscible displacement of one fluid by another within a porous bed, drainage columns and suction potential techniques have been used to obtain relationships between pressure deficiency and saturation (Fig. 1). Except where there is no hysteresis of contact angle and the solid is of simple geometry, such as a tube of uniform cross section, there is hysteresis in the relationship between capillary pressure and saturation. The relationship which has received most attention is displacement of fluid from an initially saturated bed (Fig. 1, Curve Ro), the final condition being an irreducible minimum fluid saturation Swr. Imbibition (Fig. 1, Curve A), further desaturation (Fig. 1, Curve R), and intermediate scanning curves have been studied to a lesser but increasing extent. This paper first considers the nature of the experimental points tracing the capillary pressure curves with respect to the modes and rates of mass transfer which are operative during the course of measurement. There are clear indications that the experimental points which describe these curves are obtained at apparent equilibria which are observed when viscous fluid flow has ceased; and any further changes in the fluid distribution are the result of much slower mass transfer processes, such as diffusion. Unless stated otherwise, this discussion applies to a stable packing of equal, smooth, hydrophilic spheres supported by a suction plate with water as the wetting phase and air as the nonwetting phase. SPEJ P. 15ˆ


2021 ◽  
Author(s):  
Abubakar Isah ◽  
Abdulrauf Rasheed Adebayo ◽  
Mohamed Mahmoud ◽  
Lamidi O. Babalola ◽  
Ammar El-Husseiny

Abstract Capillary pressure (Pc) and electrical resistivity index (RI) curves are used in many reservoir engineering applications. Drainage capillary pressure curve represents a scenario where a non-wetting phase displaces a wetting phase such as (i) during gas injection (ii) gas storage in reservoirs (e.g. aquifer or depleted hydrocarbon reservoirs). The gas used for injection is typically natural gas, N2, or CO2. Gas storage principally used to meet requirement variations, and water injection into oil-wet reservoirs are drainage processes. Resistivity index (RI) curve which is used to evaluate the potential of oil recovery from a reservoir, is also an important tool used in log calibration and reservoir fluid typing. The pore drainage mechanism in a multimodal pore system is important for effective recovery of hydrocarbon reserves; enhance oil recovery (EOR) planning and underground gas storage. The understanding of pore structure and drainage mechanism within a multimodal pore system during petrophysical analysis is of paramount importance to reservoir engineers. Therefore, it becomes inherent to study and establish a way to relate these special core analyses laboratory (SCAL) methods with quick measurements such as the nuclear magnetic resonance (NMR) to reduce the time requirement for analysis. This research employed the use of nuclear magnetic resonance (NMR) to estimate saturation exponent (n) of rocks using nitrogen as the displacing fluid. Different rock types were used in this study that cover carbonates, sandstones, and dolomites. We developed an analytical workflow to separate the capillary pressure curve into capillary pressure curve for macropores and a capillary pressure curve for the micropores, and then used these pore scale Pc curves to estimate an NMR - capillary pressure - based electrical resistivity index - saturation (NMR-RI-Sw) curve for the rocks. We predicted the saturation exponent (n) for the rock samples from the NMR-RI-Sw curve. The NMR-based saturation exponent estimation method requires the transverse (T2) relaxation distribution of the rock - fluid system at various saturations. To verify the reliability of the new workflow, we performed porous plate capillary pressure and electrical resistivity measurements on the rock samples. The reliability of the results for the resistivity index curve and the saturation exponent was verified using the experimental data obtained from the SCAL method. The pore scale Pc curve was used to ascertain the drainage pattern and fluid contribution of the different pore subsystems. For bimodal rock system, the drainage mechanism can be in series, in parallel, or in series - parallel depending on the rock pore structure.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Xiaoxia Ren ◽  
Aifen Li ◽  
Asadullah Memon ◽  
Shuaishi Fu ◽  
Guijuan Wang ◽  
...  

Fracturing is a fundamental technique for enhancing oil recovery of tight sandstone reservoir. The pores in tight reservoirs generally have small radii and generate tremendous capillary force; accordingly, the imbibition effect can significantly affect retention and absorption of the fracturing fluid. In this study, the imbibition behaviors of the fracturing fluid were experimentally investigated, and the effects of interfacial tension, (IFT) permeability, oil viscosity, and the salinity of the imbibition fluid were determined. In addition, combining with nuclear magnetic resonance (NMR)-based core analysis, fluid distribution, and the related variations in imbibition and displacement processes were analyzed. Finally, some key influencing factors of imbibition of the residual fracturing fluid, the difference and correlation between imbibition and displacement, as well as the contribution of imbibition to displacement were explored so as to provide optimization suggestions for guiding the application of oil-displacing fracturing fluid in exploration. Results show that imbibition recovery increased with time, but the imbibition rate gradually dropped. There exists an optimal interfacial tension that corresponds to maximum imbibition recovery. In addition, imbibition recovery increased as permeability and salinity increases and oil viscosity decreases. Furthermore, it was found that extracted oil from the movable pore throat space was almost equal to that from the irreducible pore throat space during imbibition and their contribution in the irreducible pore throat space was greater than in the movable pore throat space in the displacement process. Hence, imbibition plays a more important role during the displacement process in the reservoirs with finer porous structure than previously thought.


2014 ◽  
Vol 18 (02) ◽  
pp. 273-283 ◽  
Author(s):  
W. R. Rossen ◽  
C. S. Boeije

Summary Foam improves sweep in miscible and immiscible gas-injection enhanced-oil-recovery processes. Surfactant-alternating-gas (SAG) foam processes offer many advantages over coinjection of foam for both operational and sweep-efficiency reasons. The success of a foam SAG process depends on foam behavior at very low injected-water fraction (high foam quality). This means that fitting data to a typical scan of foam behavior as a function of foam quality can miss conditions essential to the success of an SAG process. The result can be inaccurate scaleup of results to field application. We illustrate how to fit foam-model parameters to steady-state foam data for application to injection of a gas slug in an SAG foam process. Dynamic SAG corefloods can be unreliable for several reasons. These include failure to reach local steady state (because of slow foam generation), the increased effect of dispersion at the core scale, and the capillary end effect. For current foam models, the behavior of foam in SAG depends on three parameters: the mobility of full-strength foam, the capillary pressure or water saturation at which foam collapses, and the parameter governing the abruptness of this collapse. We illustrate the fitting of these model parameters to coreflood data, and the challenges that can arise in the fitting process, with the published foam data of Persoff et al. (1991) and Ma et al. (2013). For illustration, we use the foam model in the widely used STARS (Cheng et al. 2000) simulator. Accurate water-saturation data are essential to making a reliable fit to the data. Model fits to a given experiment may result in inaccurate extrapolation to mobility at the wellbore and, therefore, inaccurate predicted injectivity: for instance, a model fit in which foam does not collapse even at extremely large capillary pressure at the wellbore. We show how the insights of fractional-flow theory can guide the model-fitting process and give quick estimates of foam-propagation rate, mobility, and injectivity at the field scale.


2020 ◽  
Vol 400 ◽  
pp. 38-44
Author(s):  
Hassan Soleimani ◽  
Hassan Ali ◽  
Noorhana Yahya ◽  
Beh Hoe Guan ◽  
Maziyar Sabet ◽  
...  

This article studies the combined effect of spatial heterogeneity and capillary pressure on the saturation of two fluids during the injection of immiscible nanoparticles. Various literature review exhibited that the nanoparticles are helpful in enhancing the oil recovery by varying several mechanisms, like wettability alteration, interfacial tension, disjoining pressure and mobility control. Multiphase modelling of fluids in porous media comprise balance equation formulation, and constitutive relations for both interphase mass transfer and pressure saturation curves. A classical equation of advection-dispersion is normally used to simulate the fluid flow in porous media, but this equation is unable to simulate nanoparticles flow due to the adsorption effect which happens. Several modifications on computational fluid dynamics (CFD) have been made to increase the number of unknown variables. The simulation results indicated the successful transportation of nanoparticles in two phase fluid flow in porous medium which helps in decreasing the wettability of rocks and hence increasing the oil recovery. The saturation, permeability and capillary pressure curves show that the wettability of the rocks increases with the increasing saturation of wetting phase (brine).


1966 ◽  
Vol 6 (01) ◽  
pp. 55-61 ◽  
Author(s):  
J.J. Pickell ◽  
B.F. Swanson ◽  
W.B. Hickman

Abstract Many physical properties of the porous media-immiscible liquid system are dependent upon the distribution of fluids within the pores; this in turn, is primarily a function of pore structure, liquid-liquid interfacial tension and liquid-solid wetting conditions. The capillary pressure hysteresis process provides a means of investigating the influence of pore structure upon fluid distribution for consistent surface conditions. Investigations indicate that residual non-wetting-phase saturations following the imbibition process (i.e., wetting phase displacing non-wetting phase) are dependent upon both pore structure and initial non-wetting phase saturation and suggest that residual fluid is distributed to discontinuous globules, one to a few pore sizes in dimension, through the entire range of pore sizes originally occupied. It appears that air-mercury capillary pressure data adequately reflect the distribution of fluids in a water-oil system when strong wetting conditions prevail. An oil-air counter-current imbibition technique has also been found to provide a rapid means of obtaining residual-initial saturation data. In a majority of cases, residual saturations determined from the oil-air or air-mercury process reasonably approximate residual oil and saturation following water drive of a strongly water-wet medium. Introduction A reliable estimate of recoverable reserves depends not only on the amount of original oil-in-place but also on pore geometry and distribution of fluids within the pores. A critical parameter determining the recovery from a reservoir under waterflood, for example, is the amount and distribution of residual oil within the various rock types present. The purpose of this paper is to investigate the mechanism of capillary trapping and assess its importance in laboratory measurements of residual oil saturation. The degree of wettability of a reservoir rock is recognized as an important factor in waterflood or imbibition experiments. In this paper, however, only the water-wet case has been considered. Considerable experimental evidence1 suggests that for water-wet rocks, capillary forces predominate in the distribution of fluids and that viscous forces in the range normally of interest in the reservoir have a minimum influence on residual oil saturation. It follows that if the ultimate recovery is controlled by pore geometry, a unique residual non-wetting phase saturation should exist for a given set of initial conditions. Two laboratory procedures found to be extremely useful in the study of pore structure and degree of fluid interconnection at various saturations are described. Although air-mercury capillary injection curves have been used2 previously to characterize the drainage case, the withdrawal or imbibition case can provide valuable supplementary data. The air-mercury process, however, has several disadvantages; it is difficult to run in a sufficiently accurate manner, mercury does not always act as a strongly non-wetting liquid and in the air-mercury process the sample is rendered unsuitable for future analyses. An alternative process is described in which air is the non-wetting phase and naptha, heptane, octane or toluene is the wetting phase. Interfacial Tension and Capillary Pressure Interfacial tension between immiscible fluids is due to the difference in attraction of like molecules as compared with their attraction to molecules of the neighboring fluid. This net attraction results in a tension at the interface. To extend the interface; thus, interfacial tension s can also be thought of as free surface energy. Interfacial tension is normally expressed as dynes/cm, and interfacial energy is measured in ergs/cm2 hence, both have dimensions mLt-2 and are numerically equal.


Sign in / Sign up

Export Citation Format

Share Document