Coupled Flow/Geomechanics Modeling of Interfracture Water Injection To Enhance Oil Recovery in Tight Reservoirs

SPE Journal ◽  
2020 ◽  
Author(s):  
Yongzan Liu ◽  
Lijun Liu ◽  
Juliana Y. Leung ◽  
Kan Wu ◽  
George Moridis

Summary Unconventional tight reservoirs that are typically characterized by low permeability and low porosity have contributed significantly to the global hydrocarbon production in recent years. Although hydraulic fracturing, along with horizontal well drilling, enables the economic development of such reservoirs, the production rate often declines sharply and results in low primary hydrocarbon recovery. The application of enhanced-oil-recovery (EOR) techniques in tight reservoirs has received much interest. In this study, the feasibility and efficiency of interfracture water injection to enhance oil recovery in multistage fractured tight oil reservoirs are analyzed through an efficient coupled flow/geomechanics model with an embedded discrete-fracture model (EDFM). A combined finite-volume/finite-element scheme is used to discretize the governing equations for flow and geomechanics, and the coupled problem is solved sequentially using a fixed-stress splitting algorithm. A basic numerical model consisting of a 15-stage fractured horizontal well is constructed using the petrophysical and geomechanical properties of a tight oil formation in Ordos Basin, China. Fractures indexed with even numbers are switched into injecting fractures when the production rate has dropped to less than a certain threshold. The improvement of oil recovery is analyzed by comparing the production profiles with and without water injection. In this coupled model, the fracture closure/opening during production/injection is considered according to the constitutive relations between fracture aperture and effective normal stress acting on the fracture faces. The poromechanical response of matrix is modeled by the Biot (1941) theory. The effects of fracture spacing, injection rate, and the presence of a natural-fracture network on oil-recovery enhancement are discussed through sensitivity analysis. The main mechanisms of interfracture water injection for enhancing oil recovery are waterflooding and reservoir-pressure maintenance. Small fracture spacing tends to reduce the oil recovery because of fracture interference and a limited drainage area; therefore, the primary depletion stage is shortened as the fracture spacing is reduced. The influence of interfracture water injection is more pronounced with smaller fracture spacing because the pressure-transient responses near the producing fractures are more dramatic considering the close proximity between the injecting fracture and the producing fracture. Although a higher injection rate results in higher oil recovery, the injectivity in low-permeability reservoirs limits the maximum-allowable injection rate. When secondary (natural)-fracture networks are considered, neighboring hydraulic fractures can be connected to one another via the secondary fractures, particularly if the interfracture spacing is small. Water can break through in the producing fractures quickly, which could also lead to high water cut and suboptimal oil-recovery performance. This study tests the feasibility and efficiency of interfracture injection to enhance tight oil recovery. The results indicate that interfracture injection can be a promising EOR technique for tight oil reservoirs, which sheds lights on future completion strategies and production design in tight reservoirs.

2021 ◽  
Author(s):  
Songyuan Liu ◽  
Xiaochun Jin ◽  
Deji Liu ◽  
Hao Xu ◽  
Lidong Zhang ◽  
...  

Abstract Traditional Microbial Enhanced Oil Recovery (MEOR) technology assumes the oil recovery is increased by the biosurfactant generating by the subsurface bacteria. However, we identified that increased recovery factor is mainly contributed by stimulating the indigenous bacteria to plug the preferred waterflooding channels, which was proved at laboratory and some high-permeable oilfield, but never implemented in the waterflooding of tight oilfield. This paper presents a comprehensive study on Bio-diversion technique by stimulating indigenous bacteria covering lab research and filed operation lasting 18 months. The lab research comprised: (1) feasibility research using modified recipe and field sample on the stimulation of indigenous microorganisms; and (2) Evaluation of effectiveness of the stimulation based on lab results. A field pilot, consisting of 10 injectors, 10 producers, injecting and producing from multi-zones, reservoir temperature is about 160 F, permeabilities range from 30 md to over 100 md, daily water injection rate is about 2,000 BWPD, pre-treatment water cut is over 90%. It is observed that the water cut has decreased from 98% to 80% gradually (3-6 months after injection). Besides, the water injection index test indicates that the injection profile becomes more evenly after 9 months of microbial nutrient injection because the stimulated bacteria reduce the permeability of more permeable zones and reduce the permeability heterogeneity in the vertical direction. Sharing the field results with the industry may inspire the operators to consider one alternative environmentally friendly and cost-effective approach to increase the recovery factor of tight oil reservoirs. From the technical viewpoint, the field pilot proves that the major mechanisms of MEOR is sweeping the unswept oil by injecting the microbial nutrient to the reservoir to stimulate the indigenous bacteria to block the preferred waterflooding channels.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shiying Di ◽  
Shiqing Cheng ◽  
Cao Wei ◽  
Wenpeng Bai ◽  
Ruyuan Shang ◽  
...  

Water huff and puff in horizontal wells in tight reservoirs has achieved good results in replenishing formation energy. However, after multiple rounds of treatment, a rapid decrease in formation pressure takes place making it difficult to maintain stable production. To improve the oil recovery rate of tight reservoirs, it is imminent to change the development mode. In this work, the stress distribution characteristics at fracture tips were analyzed based on Irwin theory and elastic theory. A model of propagation and closure length of fractures was established based on the propagation mechanism of water injection-induced natural fracture and the energy balance principle of fracture mechanics. Surfactant imbibition experiments were carried out according to the imbibition principle of surfactant system, and the propagation law of natural fractures was described with numerical simulation to analyze the seepage characteristics of dynamic fracture network. On the basis of the above works, alternating water huff and puff into segmented injection and production was proposed according to the distribution law of dynamic fracture network. The developing process of an actual well case by these two developing modes was simulated to predict 18 years of cumulative recovery, pressure distribution, and recovery rate. Results showed that when stress intensity factor exceeds the fracture toughness, the natural fractures will extend along their original directions and get connected, forming an irregular fracture network. The lengths of fractures after propagation and closure will not bring about water channeling for they are far shorter than well and interval spacing. Surfactant could diminish the resistance of boundary layer by reducing the wetting contact angle, ending up with an improvement in imbibition efficiency. Radial displacement and dynamic imbibition occur simultaneously in a dynamic fracture network during the early stage of water injection, while static imbibition mainly occurs during injection shutdown period and well soaking. According to comparison, the swept area of segmented injection and production was larger, ending up with a continuous increase of simulated recovery rate and cumulative recovery. The findings of this study show alternating water huff and puff after to segmented injection and production in fractured tight reservoir can allow full play of dynamic fracture network’s potential and achieve effective enhancement in oil recovery rate.


1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.


2014 ◽  
Vol 962-965 ◽  
pp. 461-464
Author(s):  
Ping Yuan

In the later waterflooding sandstone reservoir, there are many serious development contradictions, especially in the aspects of water breakthrough and heterogeneous development. Based on the laboratory experiments, numerical simulation research on historical match of the low temperature oxidation kinetics model, the injection mode, foaming agent concentration, gas to liquid ratio, steam injection rate and other key parameters of air-foam flooding were carried out. The results show that, air foam flooding technology integrated comprehensive effect of low-temperature oxidation, air flooding and foam flooding, which enhance oil recovery nearly 8% by block the thief layer effectively and improving the swept volume. Air-foam flooding technology also can reduce the amount of water injection and water production, which improved the utilization rate of water resources and reduced output liquid processing cost. This technology shows its broad prospect of application and can provide reference for similar reservoirs.


2009 ◽  
Vol 12 (05) ◽  
pp. 671-682 ◽  
Author(s):  
Paul J. van den Hoek ◽  
Rashid A. Al-Masfry ◽  
Dirk Zwarts ◽  
Jan-Dirk Jansen ◽  
Bernhard Hustedt ◽  
...  

Summary It is well established within the industry that water injection mostly takes place under induced fracturing conditions. Particularly in low-mobility reservoirs, large fractures may be induced during the field life. This paper presents a new modeling strategy that combines fluid flow and fracture growth (fully coupled) within the framework of an existing "standard" reservoir simulator. We demonstrate the coupled simulator by applications to repeated five-spot pattern flood models, addressing various aspects that often play an important role in waterfloods: shortcut of injector and producer, fracture containment to the reservoir layer, and areal and vertical reservoir sweep. We also demonstrate how induced fracture dimensions (length, height) can be very sensitive to typical reservoir engineering parameters, such as fluid mobility, mobility ratio, 3D saturation distribution (in particular, shockfront position), 3D temperature distribution, positions of wells (producers, injectors), and geological details (e.g., layering and faulting). In particular, it is shown that lower overall (time-dependent) reservoir transmissibility will result in larger induced fractures. Finally, it is demonstrated how induced fractures can be taken into account to determine an optimum life-cycle injection rate strategy. The results presented in this paper are expected to also apply to (part of) enhanced-oil-recovery operations (e.g., polymer flooding).


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 703-713 ◽  
Author(s):  
Hao Yongmao ◽  
Lu Mingjing ◽  
Dong Chengshun ◽  
Jia Jianpeng ◽  
Su Yuliang ◽  
...  

AbstractAimed at enhancing the oil recovery of tight reservoirs, the mechanism of hot water flooding was studied in this paper. Experiments were conducted to investigate the influence of hot water injection on oil properties, and the interaction between rock and fluid, petrophysical property of the reservoirs. Results show that with the injected water temperature increasing, the oil/water viscosity ratio falls slightly in a tight reservoir which has little effect on oil recovery. Further it shows that the volume factor of oil increases significantly which can increase the formation energy and thus raise the formation pressure. At the same time, oil/water interfacial tension decreases slightly which has a positive effect on production though the reduction is not obvious. Meanwhile, the irreducible water saturation and the residual oil saturation are both reduced, the common percolation area of two phases is widened and the general shape of the curve improves. The threshold pressure gradient that crude oil starts to flow also decreases. It relates the power function to the temperature, which means it will be easier for oil production and water injection. Further the pore characteristics of reservoir rocks improves which leads to better water displacement. Based on the experimental results and influence of temperature on different aspects of hot water injection, the flow velocity expression of two-phase of oil and water after hot water injection in tight reservoirs is obtained.


Sign in / Sign up

Export Citation Format

Share Document