The Behavior of Unconsolidated Rocks in California Waterfloods Under High-Pressure Gradients

2021 ◽  
Author(s):  
Yuanchun Li ◽  
Iraj Ershaghi

Abstract Most waterfloods in California target sandstone formations that are unconsolidated in nature with high porosities and high permeabilities. These formations are also characterized by high Poisson ratios and low values of Young's Moduli. There has been a concern if, during the waterfloods of these types of formations, fracturing takes place at high-injection gradients. The influence of various factors on leak-off is studied in detail, indicating that with an increase in rock permeability, the leak-off velocity increases. This study included a comprehensive analysis of the characteristics of such soft formations and their responses to high injection gradients. We show that if the leak-off factors are adjusted to reflect high permeability and proper geomechanical properties, the probability of fracture formation is nil at injection gradients up to 0.9 psi/ft, for unconsolidated rooks. We computed estimated fracture width, fracture height, fracture length and noted for all three calculations, it takes gradients approaching 1psi/ft to note a non-trivial estimated value for these characteristics. This study shows that for unconsolidated formations like those in California targeted for waterfloods, the probability of fracture formation under pressure gradients of 0.9 psi/ft. is nil, and high injectivities can be exercised without the fear of fracture formation.

2021 ◽  
Author(s):  
Abu M. Sani ◽  
Hatim S. AlQasim ◽  
Rayan A. Alidi

Abstract This paper presents the use of real-time microseismic (MS) monitoring to understand hydraulic fracturing of a horizontal well drilled in the minimum stress direction within a high-temperature high-pressure (HTHP) tight sandstone formation. The well achieved a reservoir contact of more than 3,500 ft. Careful planning of the monitoring well and treatment well setup enabled capture of high quality MS events resulting in useful information on the regional maximum horizontal stress and offers an understanding of the fracture geometry with respect to clusters and stage spacing in relation to fracture propagation and growth. The maximum horizontal stress based on MS events was found to be different from the expected value with fracture azimuth off by more than 25 degree among the stages. Transverse fracture propagation was observed with overlapping MS events across stages. Upward fracture height growth was dominant in tighter stages. MS fracture length and height in excess of 500 ft and 100 ft, respectively, were created for most of the stages resulting in stimulated volumes that are high. Bigger fracture jobs yielded longer fracture length and were more confined in height growth. MS events fracture lengths and heights were found to be on average 1.36 and 1.30 times, respectively, to those of pressure-match.


2018 ◽  
Vol 18 (3) ◽  
pp. 323-337
Author(s):  
Nguyen Huu Truong

Kinh Ngu Trang oilfield is of the block 09-2/09 offshore Vietnam, which is located in the Cuu Long basin, the distance from that field to Port of Vung Tau is around 140 km and it is about 14 km from the north of Rang Dong oilfield of the block 15.2, and around 50 km from the east of White Tiger in the block 09.1. That block accounts for total area of 992 km2 with the average water depth of around 50 m to 70 m. The characteristic of Oligocene E reservoir is tight oil in sandstone, very complicated with complex structure. Therefore, the big challenges in this reservoir are the low permeability and the low porosity of around 0.2 md to less than 1 md and 1% to less than 13%, respectively, leading to very low fracture conductivity among the fractures. Through the Minifrac test for reservoir with reservoir depth from 3,501 mMD to 3,525 mMD, the total leak-off coefficient and fracture closure pressure were determined as 0.005 ft/min0.5 and 9,100 psi, respectively. To create new fracture dimensions, hydraulic fracturing stimulation has been used to stimulate this reservoir, including proppant selection and fluid selection, pump power requirement. In this article, the authors present optimisation of hydraulic fracturing design using unified fracture design, the results show that optimum fracture dimensions include fracture half-length, fracture width and fracture height of 216 m, 0.34 inches and 31 m, respectively when using proppant mass of 150,000 lbs of 20/40 ISP Carbolite Ceramic proppant.


2021 ◽  
Author(s):  
Ahmed AlJanahi ◽  
Sayed Abdelrady ◽  
Hassan AlMannai ◽  
Feras AlTawash ◽  
Eyad Ali ◽  
...  

Abstract Carbonate formations often require stimulation treatments to be developed economically. Sometimes, proppant fracturing yields better results than acid stimulation. Carbonates are seldom stimulated with large-mesh-size proppants due to admittance issues caused by fissures and high Young’s modulus and narrow fracture width. The Magwa formation of Bahrain’s Awali brownfield is a rare case in which large treatments using 12/20-mesh proppant were successful after the more than 50 years of field development. To achieve success, a complex approach was required during preparation and execution of the hydraulic fracturing campaign. During the first phase, the main challenges that restricted achieving full production potential in previous stimulation attempts (both acid and proppant fracturing) were identified. Fines migration and shale instability were addressed during advanced core testing. Tests for embedment were conducted, and a full suite of logs was obtained to improve geomechanical modeling. In addition, a target was set to maximize fracture propped length to address the need for maximum reservoir contact in the tight Magwa reservoir and to maximize fracture width and conductivity. Sufficient fracture width in the shallow oil formation was required to withstand embedment. Sufficient conductivity was required to clean out the fracture under low-temperature conditions (124°F) and to minimize drawdown along the fracture considering the relatively low energy of the formation (pore pressure less than 1,000 psi). Understanding the fracture dimensions was critical to optimize the design. Independent measurement using high-resolution temperature logging and advanced sonic anisotropy measurements after fracturing helped to quantify fracture height. As a result of the applied comprehensive workflow, 18 wells were successfully stimulated, including three horizontal wellbores with multistage fracturing - achieving effective fracture half-lengths of 450-to 500-ft. Oil production from the wells exceeded expectations and more than doubled the results of all the previous attempts. Production decline rates were also less pronounced due to achieved fracture length and the ability to produce more reservoir compartments. The increase in oil recovery is due to the more uniform drainage systems enabled by the conductive fractures. The application of new and advanced techniques taken from several disciplines enabled successful propped fracture stimulation of a fractured carbonate formation. Extensive laboratory research and independent geometry measurements yielded significant fracture optimization and resulted in a step-change in well productivity. The techniques and lessons learned will be of benefit to engineers dealing with shallow carbonate reservoirs around the world.


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050013
Author(s):  
RICHENG LIU ◽  
LIYUAN YU ◽  
YANG GAO ◽  
MING HE ◽  
YUJING JIANG

This study proposed analytical solutions for permeability of a fractal-like tree network model with fractures having variable widths, which has not been reported before, if any. This model is more realistic with natural fracture networks than the traditional constant width fracture network models. The results show that considering fracture width variations decreases the permeability. Taking the fracture width ratio that equals to 0.6 and the total number of branching levels that equals to 30 as an example, the permeability decreases by more than three orders of magnitude with respect to that of a constant width fracture network model. The fracture length ratio plays a more significant role in permeability when it is larger than 0.8 than that is less than 0.8. The permeability is more sensitive to the fracture aperture ratio that is less than 0.8. When the total number of branching levels is large (i.e. 30), the permeability changes significantly (i.e. more than three orders of magnitude); whereas when the total number of branching levels is small (i.e. 5), the permeability varies in a small range (i.e. less than one order of magnitude). When taking into account the relationships among fracture length ratio, fracture aperture ratio and fracture width ratio, the parameters can be easily obtained and analytical solutions for permeability can also be easily derived. The empirical function for predicting critical hydraulic gradient is proposed, which can be used to estimate whether the fluid flow is within the linear flow regime and whether the proposed analytical solutions are applicable in the present study.


2019 ◽  
Vol 38 (2) ◽  
pp. 533-554
Author(s):  
Dong Xiao ◽  
Yingfeng Meng ◽  
Xiangyang Zhao ◽  
Gao Li ◽  
Jiaxin Xu

Gravity displacement often occurs when drilling a vertical fractured formation, causing a downhole complexity with risk of blowout and reservoir damage, well control difficulty, drilling cycle prolongation, and increased costs. Based on an experimental device created for simulating the gravity displacement, various factors affecting the displacement quantity were quantitatively evaluated by simulating the fracture width, asphalt viscosity, drilling fluid density, and viscosity under different working conditions, and a liquid–liquid displacement law was obtained. Using the theories of rock mechanics, fluid mechanics, and seepage mechanics, based on conformal mapping, as well as a fracture-pore double substrate fluid flow model, we established a steady-state mathematical model of fractured formation liquid–liquid gravity displacement by optimizing the shape factors and using a combination of gravity displacement experiments to verify the feasibility of the mathematical model. We analyzed the influence of drilling fluid density, fracture height and length, and asphalt viscosity on displacement rate, and obtained the corresponding laws. The results show that when the oil–fluid interface is stable, the fracture width is the most important factor affecting the gravity displacement, and plugging is the most effective means of managing gravity displacement.


SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2292-2307 ◽  
Author(s):  
Jizhou Tang ◽  
Kan Wu ◽  
Lihua Zuo ◽  
Lizhi Xiao ◽  
Sijie Sun ◽  
...  

Summary Weak bedding planes (BPs) that exist in many tight oil formations and shale–gas formations might strongly affect fracture–height growth during hydraulic–fracturing treatment. Few of the hydraulic–fracture–propagation models developed for unconventional reservoirs are capable of quantitatively estimating the fracture–height containment or predicting the fracture geometry under the influence of multiple BPs. In this paper, we introduce a coupled 3D hydraulic–fracture–propagation model considering the effects of BPs. In this model, a fully 3D displacement–discontinuity method (3D DDM) is used to model the rock deformation. The advantage of this approach is that it addresses both the mechanical interaction between hydraulic fractures and weak BPs in 3D space and the physical mechanism of slippage along weak BPs. Fluid flow governed by a finite–difference methodology considers the flow in both vertical fractures and opening BPs. An iterative algorithm is used to couple fluid flow and rock deformation. Comparison between the developed model and the Perkins–Kern–Nordgren (PKN) model showed good agreement. I–shaped fracture geometry and crossing–shaped fracture geometry were analyzed in this paper. From numerical investigations, we found that BPs cannot be opened if the difference between overburden stress and minimum horizontal stress is large and only shear displacements exist along the BPs, which damage the planes and thus greatly amplify their hydraulic conductivity. Moreover, sensitivity studies investigate the impact on fracture propagation of parameters such as pumping rate (PR), fluid viscosity, and Young's modulus (YM). We investigated the fracture width near the junction between a vertical fracture and the BPs, the latter including the tensile opening of BPs and shear–displacement discontinuities (SDDs) along them. SDDs along BPs increase at the beginning and then decrease at a distance from the junction. The width near the junctions, the opening of BPs, and SDDs along the planes are directly proportional to PR. Because viscosity increases, the width at a junction increases as do the SDDs. YM greatly influences the opening of BPs at a junction and the SDDs along the BPs. This model estimates the fracture–width distribution and the SDDs along the BPs near junctions between the fracture tip and BPs and enables the assessment of the PR required to ensure that the fracture width at junctions and along intersected BPs is sufficient for proppant transport.


2013 ◽  
Vol 316-317 ◽  
pp. 892-895 ◽  
Author(s):  
Bai Lie Wu ◽  
Yuan Fang Cheng ◽  
You Zhi Li ◽  
Peng Xu ◽  
Yu Ting Zhang

Hydraulic fracturing is one of the effective means to enhance coal bed methane production for vertical wells. This paper presents an approach that uses pseudo-3D fracture propagation model to study the influence of petrophysical properties, differential stress, treatment conditions, etc. on fracture geometry. It is shown that differential stress, pump rate is proportional to fracture length and width; elastic modulus, Poisson`s ratio, pump rate, etc. is proportional to fracture height. The finding is of great importance for acquiring ideal fracture geometry.


1978 ◽  
Vol 18 (02) ◽  
pp. 139-150 ◽  
Author(s):  
R. Raghavan ◽  
Nico Hadinoto

Abstract Analysis of flowing and shut-in pressure behavior of a fractured well in a developed live-spot fluid injection-production pattern is presented. An idealization of this situation, a fractured well located at the center of a constant pressure square, is discussed. Both infinite-conductivity and uniform-flux fracture cases are considered. Application of log-log and semilog methods to determine formation permeability, fracture length, and average reservoir pressure A discussed. Introduction The analysis of pressure data in fractured wells has recovered considerable attention because of the large number of wells bat have been hydraulically fractured or that intersect natural fractures. All these studies, however were restricted to wells producing from infinite reservoirs or to cases producing from infinite reservoirs or to cases where the fractured well is located in a closed reservoir. In some cases, these results were not compatible with production performance and reservoir characteristics when applied to fractured injection wells. The literature did not consider a fractured well located in a drainage area with a constant-pressure outer boundary. The most common example of such a system would be a fractured well in a developed injection-production pattern. We studied pressure behavior (drawdown, buildup, injectivity, and falloff) for a fractured well located in a region where the outer boundaries are maintained at a constant pressure. The results apply to a fractured well in a five-slot injectionproduction pattern and also should be applicable to a fractured well in a water drive reservoir. We found important differences from other systems previously reported. previously reported. We first examined drawdown behavior for a fractured well located at the center of a constant-pressure square. Both infinite-conductivity and uniform-flux solutions were considered. The drawdown solutions then were used to examine buildup behavior by applying the superposition concept. Average reservoir pressure as a function of fracture penetration ratio (ratio of drainage length to fracture length) and dimensionless time also was tabulated. This represented important new information because, as shown by Kumar and Ramey, determination of average reservoir pressure for the constant-pressure outer boundary system was not as simple as that for the closed case since fluid crossed the outer boundary in an unknown quantity during both drawdown (injection) and buildup (falloff). MATHEMATICAL MODEL This study employed the usual assumptions of a homogeneous, isotropic reservoir in the form of a rectangular drainage region completely filled with a slightly compressible fluid of constant viscosity. Pressure gradients were small everywhere and Pressure gradients were small everywhere and gravity effects were neglected. The outer boundary of the system was at constant pressure and was equal to the initial pressure of the system. The plane of the fracture was located symmetrically plane of the fracture was located symmetrically within the reservoir, parallel to one of the sides of the boundary (Fig. 1). The fracture extended throughout the vertical extent of the formation and fluid was produced only through the fracture at a constant rate. Both the uniform-flux and the infinite-conductivity fracture solutions were considered. P. 139


Author(s):  
C. Geel ◽  
E.M. Bordy ◽  
S. Nolte

Abstract Permian black shales from the lower Ecca Group of the southern main Karoo Basin (MKB) have a total organic carbon (TOC) of up to ~5 wt% and have been considered primary targets for a potential shale gas exploration in South Africa. This study investigates the influence of shale composition, porosity, pressure (P) and temperatures (T) on their geomechanical properties such as compressive strength and elastic moduli. On average, these lower Ecca Group shales contain a high proportion, ~50 to 70 vol%, of mechanically strong minerals (e.g., quartz, feldspar, pyrite), ~30 to 50 vol% of weak minerals (e.g., clay minerals, organic matter) and ~0 to 50 vol% of intermediate minerals (e.g., carbonates), which have highly variable mechanical strength. Constant strain rate, triaxial deformation tests (at T ≤100°C; P ≤50 MPa) were performed using a Paterson-type high pressure instrument. Results showed that the Prince Albert Formation is the strongest and most brittle unit in the lower Ecca Group in the southern MKB followed by the Collingham and then the Whitehill Formation. Compressive strength and Young’s moduli (E) increase with increasing hard mineral content and decrease with increasing mechanically weak minerals and porosity. On comparison with some international shales, for which compositional and geomechanical data were measured using similar techniques, the lower Ecca Group shales are found to be geomechanically stronger and more brittle. This research provides the foundation for future geomechanical and petrophysical investigations of these Permian Ecca black shales and their assessment as potential unconventional hydrocarbon reservoirs in the MKB.


Sign in / Sign up

Export Citation Format

Share Document