scholarly journals OPTIMISATION OF HYDRAULIC FRACTURING DESIGN IN LOWER OLIGOCENE RESERVOIR, KINH NGU TRANG OILFIELD

2018 ◽  
Vol 18 (3) ◽  
pp. 323-337
Author(s):  
Nguyen Huu Truong

Kinh Ngu Trang oilfield is of the block 09-2/09 offshore Vietnam, which is located in the Cuu Long basin, the distance from that field to Port of Vung Tau is around 140 km and it is about 14 km from the north of Rang Dong oilfield of the block 15.2, and around 50 km from the east of White Tiger in the block 09.1. That block accounts for total area of 992 km2 with the average water depth of around 50 m to 70 m. The characteristic of Oligocene E reservoir is tight oil in sandstone, very complicated with complex structure. Therefore, the big challenges in this reservoir are the low permeability and the low porosity of around 0.2 md to less than 1 md and 1% to less than 13%, respectively, leading to very low fracture conductivity among the fractures. Through the Minifrac test for reservoir with reservoir depth from 3,501 mMD to 3,525 mMD, the total leak-off coefficient and fracture closure pressure were determined as 0.005 ft/min0.5 and 9,100 psi, respectively. To create new fracture dimensions, hydraulic fracturing stimulation has been used to stimulate this reservoir, including proppant selection and fluid selection, pump power requirement. In this article, the authors present optimisation of hydraulic fracturing design using unified fracture design, the results show that optimum fracture dimensions include fracture half-length, fracture width and fracture height of 216 m, 0.34 inches and 31 m, respectively when using proppant mass of 150,000 lbs of 20/40 ISP Carbolite Ceramic proppant.

2019 ◽  
Vol 3 (2) ◽  
pp. 10-21
Author(s):  
Akram Humoodi ◽  
Maha Hamoudi ◽  
Rasan Sarbast

This study focuses on procedures to enhance permeability and flow rate for a low permeability formation by creating a conductive path using the hydraulic fracturing model. Well data are collected from the Qamchuqa KRG oil field formation. A Fracpro simulator is used for modelling the hydraulic fracturing process in an effective way. The study focuses on an effective hydraulic fracturing design procedure and the parameters affecting the fracture design. Optimum design of fracturing is achieved by selecting the proper fracturing fluid with a suitable proppant carried in a slurry, determining the formation fracturing pressure, selection of a fracture propagation fluid, and also a good proppant injection schedule, using a high pump rate and good viscosity. Permeability and conductivity are calculated before and after applying the hydraulic fracturing. Fracture height, length, and width are calculated from the Fracpro software, among other parameters, and the production rate changes. From the results, it is observed that by using hydraulic fracturing technology, production will increase and permeability will be much higher. The original formation permeability is 2.55 md, and after treatment, the average fracture conductivity has significantly increased to 1742.3 md-ft. The results showed that average fracture width is 0.187 inch. The proppant used in this treatment has a permeability of 122581 md. The suitable fluid choice is hyper with an apparent viscosity of 227.95 cp, and the proper proppant type is Brady sand with a conductivity of 2173.41 md-ft. Fracture orientation from the Khurmala oil field in Kurdistan is vertical fractures produced at a depth of 1868 m. Fracture half-length, total fracture height, and average fracture width are 220 ft, 42 ft, and 0.47 inch, respectively. After fracturing, the maximum and average area of fracture are 33.748 and 17.248 ft2, respectively. The recommended pump hydraulic horse power is 3200 HHP, and the total required fluid is 1076.3 bbl. In this study, hydraulic fracture is designed, and then, it has been analyzed after that production is optimized.


SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1648-1668 ◽  
Author(s):  
HanYi Wang ◽  
Mukul M. Sharma

Summary A new method is proposed to estimate the compliance and conductivity of induced unpropped fractures as a function of the effective stress acting on the fracture from diagnostic-fracture-injection-test (DFIT) data. A hydraulic-fracture resistance to displacement and closure is described by its compliance (or stiffness). Fracture compliance is closely related to the elastic, failure, and hydraulic properties of the rock. Quantifying fracture compliance and fracture conductivity under in-situ conditions is crucial in many Earth-science and engineering applications but is very difficult to achieve. Even though laboratory experiments are used often to measure fracture compliance and conductivity, the measurement results are influenced strongly by how the fracture is created, the specific rock sample obtained, and the degree to which it is preserved. As such, the results may not be representative of field-scale fractures. During the past 2 decades, the DFIT has evolved into a commonly used and reliable technique to obtain in-situ stresses, fluid-leakoff parameters, and formation permeability. The pressure-decline response across the entire duration of a DFIT reflects the process of fracture closure and reservoir-flow capacity. As such, it is possible to use these data to quantify changes in fracture conductivity as a function of stress. In this paper, we present a single, coherent mathematical framework to accomplish this. We show how each factor affects the pressure-decline response, and the effects of previously overlooked coupled mechanisms are examined and discussed. Synthetic and field-case studies are presented to illustrate the method. Most importantly, a new specialized plot (normalized system-stiffness plot) is proposed, which not only provides clear evidence of the existence of a residual fracture width as a fracture is closing during a DFIT, but also allows us to estimate fracture-compliance (or stiffness) evolution, and infer unpropped fracture conductivity using only DFIT pressure and time data alone. It is recommended that the normalized system-stiffness plot (NS plot) be used as a standard practice to complement the G-function or square-root-of-time plot and log-log plot because it provides very valuable information on fracture-closure behavior and the properties of fracture-surface roughness at a field-scale, information that cannot be obtained by any other means.


1984 ◽  
Vol 24 (03) ◽  
pp. 256-268 ◽  
Author(s):  
W.L. Medlin ◽  
L. Masse

Abstract This paper describes fracturing experiments in dry blocks of various rock materials. The results have application to evaluation of hydraulic fracturing theories. The block dimensions were 3 in.×4 in.×12 in. [7.6 cm×10.2 cm×30.5 cm] with metal plates epoxied to the 3-in.×12-in. [7.6-cm×30.5-cm] faces. Remaining faces were coated with soft epoxy to provide an impermeable jacket. The blocks were loaded in a pressure cell with an upper movable piston bearing on the 3-in.×4-in. [7.6-cm×10.2-cm] faces. A servo-controlled press applied constant stress to these faces higher than a lateral confining stress applied by oil pressure. Fractures were initiated by injection of various fluids into a small notch located on a center plane parallel to the 4-in.×12-in. [10.2-cm×30.5-cm] faces. Fracture growth along the same plane was assured by the stress conditions. Use of these experiments to test theories of fracture propagation required measurement of three variables, fracture width bi, and propagation pressure pi at the notch entrance, and fracture length, L. bi was determined by a capacitance method, and pi was measured directly by a pressure transducer. L was measured by two methods - either ultrasonic signals or pressure pulses generated in miniature cavities. The ultrasonic method confirmed the existence of a Barenblatt liquid-free crack ahead of the liquid front whose relative length decreased with confining stress. The metal plates bonded to the 3-in.×4-in. [7.6-cm×10.2-cm] faces prevented slip at the top and bottom of the fracture, giving a three-dimensional (3D) crack of constant height. However, the bi, pi, and L data followed trends predicted by two-dimensional (2D) (plane strain) elastic theory reasonably well. Fracture closure measurements after shut-in showed an initial period of leakoff-controlled closure and a final period of creep-controlled closure. A pi slope change at the transition is identified with the instantaneous shut-in pressure (ISIP) in field records and is higher than the true confining stress. Introduction Methods of predicting crack dimensions during fracturing operations are essential to proper design of field treatments. Many fracture-propagation theories have been advanced. Contributions have been made by Barenblatt,1 Khristianovitch and Zheltov,4,5 Howard and Fast,6 Perkins and Kern,7 LeTirant and Dupuy,8 Nordgren,9 Geertsma and de Klerk,10 Daneshy,11 and Cleary12,13 among others. However, practical methods of evaluating the theoretical work have been few. Mostly they have been. limited to indirect and generally inconclusive field evaluations. The Sandia mineback experiments14–16 have provided more direct evaluations. However, even here important fracturing parameters are uncontrolled or unknown. This paper describes laboratory-scale hydraulic fracturing experiments that provide critical data for evaluating crack propagation theories. In these experiments we measured the fundamental variables of crack growth under controlled conditions with known fracturing parameters. Experimental Methods All fracturing experiments were carried out in dry blocks 3 in.×4 in.×12 in. [7.6 cm×10.2 cm×30.5 cm] in size. Mesa Verde sandstone and Carthage and Lueders limestone were used as sample materials. Scaling considerations were important. It was necessary to scale down injection rate and leakoff to be consistent with fracture dimensions. The scaling factor of importance was taken to be fluid efficiency, the ratio of crack volume to injected volume. This factor was controlled through appropriate combinations of sample permeability and fracturing fluid viscosity. As fracturing fluids we used thick grease, hydraulic oils of various viscosities, and gelled kerosene (Dowell's YFGO™). Fluid efficiencies ranged from 3 to 70%. Most experiments were conducted at efficiencies between 30 and 50 %, a range typical of most field treatments. Fig. 1 shows the experimental arrangement. Shaped aluminum plates were bonded with Hysol clear epoxy to the 3-in.×12-in. [7.6-cm×30.5-cm] faces of the sample block as shown. The remaining faces were coated with a thin layer of the same epoxy to provide an impermeable jacket for confining pressure. One of the aluminum plates contained an injection port communicating with a 1.4-in. [0.64-cm] borehole as illustrated. A pair of brass plates with faces 0.2 in.×0.5 in. [0.5 cm×1.3 cm] was epoxied into the borehole at its center. These plates, separated by a gap of 0.01 in. [0.025 cm] served as a parallel plate capacitor. They were connected to a capacitance bridge that detected changes in gap width through changes in capacitance. This provided a direct, continuous measurement of fracture width at the borehole.


2021 ◽  
pp. 1-8
Author(s):  
T. Jatykov ◽  
K. Bimuratkyzy

Summary An industry-accepted standard for minifrac analysis for evaluating and improving design of hydraulic fracturing treatments originated from the original Nolte analysis (Nolte 1979) of pressure decline, followed by the introduction of Castillo G-function in a Cartesian plot (Castillo 1987). The latter provides a graphical method for the identification of fracture closure pressures and stresses with subsequent derivation of other parameters such as fluid efficiency and fracture geometry. With the introduction of a more advanced consideration of the G-function interpretation for various reservoir conditions (Barree et al. 2007), subdividing the interpretation into calculations based on flow regimes and leakoff modes, this approach has become even more sophisticated. Particularly, interesting flow regimes and leakoff modes during fracture closure include the fracture height recession mode. This mode tends to result in rapid screenout and difficulty in placing high proppant concentrations. Regarding interpretation, the G-function derivative curve for this mode can have more than one plateau, an outcome that is possibly indicative of features that have not been widely considered to date or on which little to no data have been published. This paper presents a case study as an example of such height recession mode, along with a subsequent G-function interpretation and analysis and with consideration of the vertical facies distribution along the wellbore. Considerable attention is paid to the G-function derivative plateau analysis. Three distinctive wells, namely X-1,X-2, and X-3, are discussed. Using this technique can lead to an improved fracture calibration, optimized fracture design, and adoption of a successful completion strategy; additionally, the confirmation of 1D facies distribution can provide new insights into the fracture closure period.


2021 ◽  
pp. 1-18
Author(s):  
Temoor Muther ◽  
Fahad Iqbal Syed ◽  
Amirmasoud Kalantari Dahaghi ◽  
Shahin Negahban

Abstract Hydraulic fracturing is one of the revolutionary technologies widely applied to develop tight hydrocarbon reservoirs. Moreover, hydraulic fracture design optimization is an essential step to optimize production from tight reservoirs. This study presents the implementation of three new socio-inspired algorithms on hydraulic fracturing optimization. The work integrates reservoir simulation, artificial neural networks, and preceding optimization algorithms to attain the optimized fractures. For this study, a tight gas production dataset is initially generated numerically for a defined set of the fracture half-length, fracture height, fracture width, fracture conductivity, and the number of fractures' values. Secondly, the generated dataset is trained through a neural network to predict the effects of preceding parameters on gas production. Lastly, three new socio-inspired algorithms including Cohort Intelligence (CI), Multi-cohort Intelligence (Multi-CI), and Teaching Learning-based optimization (TLBO) are applied to the regressor output to obtain optimized gas production performance with the combination of optimum fracture design parameters. The results are then compared with the traditionally used optimizers including Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). The results demonstrated that the Multi-CI and TLBO converge at the global best position more often with a success rate of atleast 95% as compared to CI, PSO, and GA. Moreover, the CI, PSO, and GA are found to stuck many times at the local maximum. This concludes that the Multi-CI and TLBO are good alternatives to PSO and GA considering their high performance in determining the optimum fracture design parameters, in comparison.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553d-553
Author(s):  
C.R. Unrath

Historically, most airblast chemical applications to apple orchards used a single “average” water volume, resulting in variability of coverage with tree size and also the greatest variable in chemical thinning. This coverage variability can be eliminated by properly quantifying the tree canopy, as tree row volume (TRV), and relating that volume to airblast water rate for adequate coverge. Maximum typical tree height, cross-row limb spread, and between-row spacing are used to quantify the TRV. Further refinement is achieved by adjusting the water volume for tree canopy density. The North Carolina TRV model allows a density adjustment from 0.7 gal/1000 ft3 of TRV for young, very open tree canopies to 1.0 gal/1000 ft3 of TRV for large, thick tree canopies to deliver a full dilute application for maximum water application (to the point of run-off). Most dilute pesticide applications use 70% of full dilute to approach the point of drip (pesticide dilute) to not waste chemicals and reduce non-target environmental exposure. From the “chemical load” (i.e., lb/acre) calculated for the pesticide dilute application, the proper chemical load for lower (concentrate) water volumes can be accurately determined. Another significant source of variability is thinner application response is spray distribution to various areas of the tree. This variability is related to tree configuration, light, levels, fruit set, and natural thinning vs. the need for chemical thinning. Required water delivery patterns are a function of tree size, form, spacing, and density, as well as sprayer design (no. of nozzles and fan size). The TRV model, density adjustments, and nozzle patterns to effectively hit the target for uniform crop load will be addressed.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1783
Author(s):  
Klaudia Wilk-Zajdel ◽  
Piotr Kasza ◽  
Mateusz Masłowski

In the case of fracturing of the reservoirs using fracturing fluids, the size of damage to the proppant conductivity caused by treatment fluids is significant, which greatly influence the effective execution of hydraulic fracturing operations. The fracturing fluid should be characterized by the minimum damage to the conductivity of a fracture filled with proppant. A laboratory research procedure has been developed to study the damage effect caused by foamed and non-foamed fracturing fluids in the fractures filled with proppant material. The paper discusses the results for high quality foamed guar-based linear gels, which is an innovative aspect of the work compared to the non-foamed frac described in most of the studies and simulations. The tests were performed for the fracturing fluid based on a linear polymer (HPG—hydroxypropyl guar, in liquid and powder form). The rheology of nitrogen foamed-based fracturing fluids (FF) with a quality of 70% was investigated. The quartz sand and ceramic light proppant LCP proppant was placed between two Ohio sandstone rock slabs and subjected to a given compressive stress of 4000–6000 psi, at a temperature of 60 °C for 5 h. A significant reduction in damage to the quartz proppant was observed for the foamed fluid compared to that damaged by the 7.5 L/m3 natural polymer-based non-foamed linear fluid. The damage was 72.3% for the non-foamed fluid and 31.5% for the 70% foamed fluid, which are superior to the guar gum non-foamed fracturing fluid system. For tests based on a polymer concentration of 4.88 g/L, the damage to the fracture conductivity by the non-foamed fluid was 64.8%, and 26.3% for the foamed fluid. These results lead to the conclusion that foamed fluids could damage the fracture filled with proppant much less during hydraulic fracturing treatment. At the same time, when using foamed fluids, the viscosity coefficient increases a few times compared to the use of non-foamed fluids, which is necessary for proppant carrying capacities and properly conducted stimulation treatment. The research results can be beneficial for optimizing the type and performance of fracturing fluid for hydraulic fracturing in tight gas formations.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3133
Author(s):  
Yuling Meng ◽  
Fei Zhao ◽  
Xianwei Jin ◽  
Yun Feng ◽  
Gangzheng Sun ◽  
...  

Fracturing fluids are being increasingly used for viscosity development and proppant transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby maximizing fracture conductivity and minimizing residual damaging materials. In this study, the efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs. The parameters considered were the effect of the breaker on shear resistance performance and sand-suspending performance of the fracturing fluid, its damage to the reservoir after gel breaking, and its gel-breaking efficiency. The experimental results verified that mannanase II is an enzyme breaker with excellent gel-breaking performance at medium temperatures and alkaline conditions. In addition, mannanase II did not adversely affect the shear resistance performance and sand-suspending performance of the fracturing fluid during hydraulic fracturing. For the same gel-breaking result, the concentration of mannanase II used was only one fifth of other enzyme breakers (e.g., mannanase I, galactosidase, and amylase). Moreover, the amount of residue and the particle size of the residues generated were also significantly lower than those of the ammonium persulfate breaker. Finally, we also examined the viscosity-reducing capability of mannanase II under a wide range of temperatures (104–158 °F) and pH values (7–8.5) to recommend its best-use concentrations under different fracturing conditions. The mannanase has potential for applications in low-permeability oilfield development and to maximize long-term productivity from unconventional oilwells.


2021 ◽  
Author(s):  
Dimitry Chuprakov ◽  
Ludmila Belyakova ◽  
Ivan Glaznev ◽  
Aleksandra Peshcherenko

Abstract We developed a high-resolution fracture productivity calculator to enable fast and accurate evaluation of hydraulic fractures modeled using a fine-scale 2D simulation of material placement. Using an example of channel fracturing treatments, we show how the productivity index, effective fracture conductivity, and skin factor are sensitive to variations in pumping schedule design and pulsing strategy. We perform fracturing simulations using an advanced high-resolution multiphysics model that includes coupled 2D hydrodynamics with geomechanics (pseudo-3D, or P3D, model), 2D transport of materials with tracking temperature exposure history, in-situ kinetics, and a hindered settling model, which includes the effect of fibers. For all simulated fracturing treatments, we accurately solve a problem of 3D planar fracture closure on heterogenous spatial distribution of solids, estimate 2D profiles of fracture width and stresses applied to proppants, and, as a result, obtain the complex and heterogenous shape of fracture conductivity with highly conductive cells owing to the presence of channels. Then, we also evaluate reservoir fluid inflows from a reservoir to fracture walls and further along a fracture to limited-size wellbore perforations. Solution of a productivity problem at the finest scale allows us to accurately evaluate key productivity characteristics: productivity index, dimensional and dimensionless effective conductivity, skin factor, and folds of increase, as well as the total production rate at any day and for any pressure drawdown in a well during well production life. We develop a workflow to understand how productivity of a fracture depends on variation of the pumping schedule and facilitate taking appropriate decisions about the best job design. The presented workflow gives insight into how new computationally efficient methods can enable fast, convenient, and accurate evaluation of the material placement design for maximum production with cost-saving channel fracturing technology.


Sign in / Sign up

Export Citation Format

Share Document