A Semianalytical Method for Two-Phase Flowback Rate-Transient Analysis in Shale Gas Reservoirs

SPE Journal ◽  
2020 ◽  
Vol 25 (04) ◽  
pp. 1599-1622 ◽  
Author(s):  
Fengyuan Zhang ◽  
Hamid Emami-Meybodi

Summary We propose a new semianalytical method for analyzing flowback water and gas production data to estimate hydraulic fracture (HF) properties and to quantify HF dynamics. The method includes a semianalytical flowback model, a set of two-phase diagnostic plots, and a workflow to evaluate initial fracture volume and permeability, as well as fracture compressibility and permeability modulus. The flowback model incorporates two-phase water and gas flow in both HF and matrix domains and considers variations of fluid and rock properties with pressure. The HF domain is modeled by boundary-dominated flow, whereas an infinite-acting linear flow is assumed for the matrix domain. The flowback model is developed by assigning the variable average pressure in the fracture as the inner boundary condition for matrix according to Duhamel's principle. The average pressure in the fracture and distance of investigation (DOI) in the matrix are calculated from a modified material-balance equation by updating the matrix DOI as well as phase saturation and relative permeability in both the fracture and matrix domains. A modified DOI equation is used for two-phase flow in the matrix, which considers the pressure-dependent fluid and rock properties in pseudotime. The diagnostic plots shed light on the identification of flow regimes during the coupled two-phase flow in both fracture and matrix. The proposed workflow quantifies the HF dynamics through the loss of both fracture volume and fracture permeability by reconciling flowback and long-term production data. The accuracy of the new method is tested against numerical simulations conducted by a commercial numerical simulator. The validation results confirm that the proposed method accurately predicts initial fracture volume, permeability, and permeability modulus. Further, we use production data from a multifractured horizontal well (MFHW) drilled in Marcellus Shale to test the practicality of the proposed method. The results show a significant reduction in fracture volume and permeability during production attributable to the HF closure.

Author(s):  
R.W. Carpenter ◽  
Changhai Li ◽  
David J. Smith

Binary Nb-Hf alloys exhibit a wide bcc solid solution phase field at temperatures above the Hfα→ß transition (2023K) and a two phase bcc+hcp field at lower temperatures. The β solvus exhibits a small slope above about 1500K, suggesting the possible existence of a miscibility gap. An earlier investigation showed that two morphological forms of precipitate occur during the bcc→hcp transformation. The equilibrium morphology is rod-type with axes along <113> bcc. The crystallographic habit of the rod precipitate follows the Burgers relations: {110}||{0001}, <112> || <1010>. The earlier metastable form, transition α, occurs as thin discs with {100} habit. The {100} discs induce large strains in the matrix. Selected area diffraction examination of regions ∼2 microns in diameter containing many disc precipitates showed that, a diffuse intensity distribution whose symmetry resembled the distribution of equilibrium α Bragg spots was associated with the disc precipitate.


Author(s):  
U. Dahmen ◽  
K.H. Westmacott

Despite the increased use of convergent beam diffraction, symmetry concepts in their more general form are not commonly applied as a practical tool in electron microscopy. Crystal symmetry provides an abundance of information that can be used to facilitate and improve the TEM analysis of crystalline solids. This paper draws attention to some aspects of symmetry that can be put to practical use in the analysis of structures and morphologies of two-phase materials.It has been shown that the symmetry of the matrix that relates different variants of a precipitate can be used to determine the axis of needle- or lath-shaped precipitates or the habit plane of plate-shaped precipitates. By tilting to a special high symmetry orientation of the matrix and by measuring angles between symmetry-related variants of the precipitate it is possible to find their habit from a single micrograph.


1996 ◽  
Vol 2 (3) ◽  
pp. 113-128 ◽  
Author(s):  
Sundar Ramamurthy ◽  
Michael P. Mallamaci ◽  
Catherine M. Zimmerman ◽  
C. Barry Carter ◽  
Peter R. Duncombe ◽  
...  

Dense, polycrystalline MgO was infiltrated with monticellite (CaMgSiO4) liquid to study the penetration of liquid along the grain boundaries of MgO. Grain growth was found to be restricted with increasing amounts of liquid. The inter-granular regions were generally found to be comprised of a two-phase mixture: crystalline monticellite and a glassy phase rich in the impurities present in the starting MgO material. MgO grains act as seeding agents for the crystallization of monticellite. The location and composition of the glassy phase with respect to the MgO grains emphasizes the role of intergranular liquid during the devitrification process in “snowplowing” impurities present in the matrix.


1998 ◽  
Vol 529 ◽  
Author(s):  
T. Antretter ◽  
E D. Fischer

AbstractIn many composites consisting of hard and brittle inclusions embedded in a ductile matrix failure can be attributed to particle cleavage followed by ductile crack growth in the matrix. Both mechanisms are significantly sensitive towards the presence of residual stresses.On the one hand particle failure depends on the stress distribution inside the inclusion, which, in turn, is a function of various geometrical parameters such as the aspect ratio and the position relative to adjacent particles as well as the external load. On the other hand it has been observed that the absolute size of each particle plays a role as well and will, therefore, be taken into account in this work by means of the Weibull theory. Unit cells containing a number of quasi-randomly oriented elliptical inclusions serve as the basis for the finite element calculations. The numerical results are then correlated to the geometrical parameters defining the inclusions. The probability of fracture has been evaluated for a large number of inclusions and plotted versus the particle size. The parameters of the fitting curves to the resulting data points depend on the choice of the Weibull parameters.A crack tip opening angle criterion (CTOA) is used to describe crack growth in the matrix emanating from a broken particle. It turns out that the crack resistance of the matrix largely depends on the distance from an adjacent particle. Residual stresses due to quenching of the material tend to reduce the risk of particle cleavage but promote crack propagation in the matrix.


2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Ivan Ishimov

Abstract In this paper the simplified way is proposed for predicting the dynamics of liquid production and estimating the parameters of the oil reservoir using diagnostic curves, which are a generalization of analytical approaches, partially compared with the results of calculations on 3D simulation models and with actual well production data.


2021 ◽  
Author(s):  
Helmi Pratikno ◽  
W. John Lee ◽  
Cesario K. Torres

Abstract This paper presents a method to identify switch time from end of linear flow (telf) to transition or boundary-dominated flow (BDF) by utilizing multiple diagnostic plots including a Modified Fetkovich type curve (Eleiott et al. 2019). In this study, we analyzed publicly available production data to analyze transient linear flow behavior and boundary-dominated flow from multiple unconventional reservoirs. This method applies a log-log plot of rate versus time combined with a log-log plot of rate versus material balance time (MBT). In addition to log-log plots, a specialized plot of rate versus square root of time is used to confirm telf. A plot of MBT versus actual time, t, is provided to convert material balance time to actual time, and vice versa. The Modified Fetkovich type curve is used to estimate decline parameters and reservoir properties. Applications of this method using monthly production data from Bakken and Permian Shale areas are presented in this work. Utilizing public data, our comprehensive review of approximately 800 multi-staged fractured horizontal wells (MFHW) from North American unconventional reservoirs found many of them exhibiting linear flow production characteristics. To identify end of linear flow, a log-log plot of rate versus time alone is not sufficient, especially when a well is not operated in a consistent manner. This paper shows using additional diagnostic plots such as rate versus MBT and specialized plots can assist interpreters to better identify end of linear flow. With the end of linear flow determined for these wells, the interpreter can use the telf to forecast future production and estimate reservoir properties using the modified type curve. These diagnostic plots can be added to existing production analysis tools so that engineers can analyze changes in flow regimes in a timely manner, have better understanding of how to forecast their wells, and reduce the uncertainty in estimated ultimate recoveries related to decline parameters.


2021 ◽  
pp. 1-23
Author(s):  
Daniel O'Reilly ◽  
Manouchehr Haghighi ◽  
Mohammad Sayyafzadeh ◽  
Matthew Flett

Summary An approach to the analysis of production data from waterflooded oil fields is proposed in this paper. The method builds on the established techniques of rate-transient analysis (RTA) and extends the analysis period to include the transient- and steady-state effects caused by a water-injection well. This includes the initial rate transient during primary production, the depletion period of boundary-dominated flow (BDF), a transient period after injection starts and diffuses across the reservoir, and the steady-state production that follows. RTA will be applied to immiscible displacement using a graph that can be used to ascertain reservoir properties and evaluate performance aspects of the waterflood. The developed solutions can also be used for accurate and rapid forecasting of all production transience and boundary-dominated behavior at all stages of field life. Rigorous solutions are derived for the transient unit mobility displacement of a reservoir fluid, and for both constant-rate-injection and constant-pressure-injection after a period of reservoir depletion. A simple treatment of two-phase flow is given to extend this to the water/oil-displacement problem. The solutions are analytical and are validated using reservoir simulation and applied to field cases. Individual wells or total fields can be studied with this technique; several examples of both will be given. Practical cases are given for use of the new theory. The equations can be applied to production-data interpretation, production forecasting, injection-water allocation, and for the diagnosis of waterflood-performanceproblems. Correction Note: The y-axis of Fig. 8d was corrected to "Dimensionless Decline Rate Integral, qDdi". No other content was changed.


2018 ◽  
Vol 7 (3) ◽  
pp. 581-604 ◽  
Author(s):  
Armin Eftekhari ◽  
Michael B Wakin ◽  
Rachel A Ward

Abstract Leverage scores, loosely speaking, reflect the importance of the rows and columns of a matrix. Ideally, given the leverage scores of a rank-r matrix $M\in \mathbb{R}^{n\times n}$, that matrix can be reliably completed from just $O (rn\log ^{2}n )$ samples if the samples are chosen randomly from a non-uniform distribution induced by the leverage scores. In practice, however, the leverage scores are often unknown a priori. As such, the sample complexity in uniform matrix completion—using uniform random sampling—increases to $O(\eta (M)\cdot rn\log ^{2}n)$, where η(M) is the largest leverage score of M. In this paper, we propose a two-phase algorithm called MC2 for matrix completion: in the first phase, the leverage scores are estimated based on uniform random samples, and then in the second phase the matrix is resampled non-uniformly based on the estimated leverage scores and then completed. For well-conditioned matrices, the total sample complexity of MC2 is no worse than uniform matrix completion, and for certain classes of well-conditioned matrices—namely, reasonably coherent matrices whose leverage scores exhibit mild decay—MC2 requires substantially fewer samples. Numerical simulations suggest that the algorithm outperforms uniform matrix completion in a broad class of matrices and, in particular, is much less sensitive to the condition number than our theory currently requires.


2021 ◽  
Vol 19 (2) ◽  
pp. 241
Author(s):  
Ruslan Balokhonov ◽  
Varvara Romanova ◽  
Eugen Schwab ◽  
Aleksandr Zemlianov ◽  
Eugene Evtushenko

A technique for computer simulation of three-dimensional structures of materials with reinforcing particles of complex irregular shapes observed in the experiments is proposed, which assumes scale invariance of the natural mechanical fragmentation. Two-phase structures of metal-matrix composites and coatings of different spatial scales are created, with the particles randomly distributed over the matrix and coating computational domains. Using the titanium carbide reinforcing particle embedded into the aluminum as an example, plastic strain localization and residual stress formation along the matrix-particle interface are numerically investigated during cooling followed by compression or tension of the composite. A detailed analysis is performed to evaluate the residual stress concentration in local regions of bulk tension formed under all-round and uniaxial compression of the composite due to the concave and convex interfacial asperities.


Sign in / Sign up

Export Citation Format

Share Document