Experimental Investigation of Oil/Water Emulsion Rheology in Electric Submersible Pump and its Effect on the Pump Head Performance

2021 ◽  
Author(s):  
Muhammad Rasyid Ridlah ◽  
Haiwen Zhu ◽  
Hong-Quan Zhang

Abstract The presence of formation water throughout the oil well production lifetime is inevitable and consequently forming the dispersion or the emulsion due to the immiscibility of those two phases and the strong shear force acting in a rotating ESP. The formation of stable emulsion close to the inversion point will significantly increase the effective viscosity of an emulsion. This paper will present an experimental investigation of emulsion rheology inside the ESP and its effect on ESP performance under various oil viscosities and different water cuts (WC). Multi stages radial type ESP were assembled into a viscous flow loop which was initially developed by Zhang (2017). Emulsions at each WC formed from different oil viscosities, similar oil density, and surface tension. Multistage ESP was used to circulate oil/water emulsions in a close flow loop. Mass flowmeter measures both mass flow rate and fluid density, and the effective emulsion viscosity derived from an in-line pipe viscometer (PV) which locates downstream of the ESP discharge. The pressure transmitter is occupied in each pump stage to measure the pressure increment. The experiment results present in terms of pump boosting pressure at each water cut and the flow rate delivered by the pump. A Single-phase oil experiment was run at a different temperature to validate the accuracy of the PV. The data discrepancy of PV's viscosity and rotational viscometer is ±6%. The experiment results captured the emulsion's effective viscosity trend as a function of WC. A significant increase of effective viscosity close to the inversion point was observed, and it occurs due to a higher number of water droplets and hydrogen bonds which lead to an increase in hydrodynamic forces thus generating a tight emulsion. The experiment results reveal that a higher oil viscosity 70 cp reaches an inversion point at 30% - 35% WC. Meanwhile, for lower oil viscosity 45 cp reaches the inversion point at 35% - 40% WC since the turbulence increases with the decrease of oil viscosity. The increasing of effective viscosity in the water-oil emulsion induces higher pressure loss in the pump due to high friction loss, and it deteriorates the pump head. Nevertheless, as the WC increases further, the pump head will advance close to the single-phase water performance since the water turns as the continuous phase. Eventually, we can observe a prudent relationship in the pump performance in the change of emulsions effective viscosity as a function of WC. The inversion point phenomena occur at a different range of WC for different oil viscosity. Therefore, it is vital to set the possible range of operational conditions away from the inversion point. A better understanding of these aforementioned issues will lead to an accurate ESP design for optimum well performance.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
I. Qiram

Water pollution is a major environment problem. Oil water separator can be used to solve this problem. This research is aimed to get the effect of vertical divider number and fluid flow rate due to oil viscosity. The research is done by experiment using gravity separator. Vertical dividers are varied as 5 and 7. Fluid flow rate is vary as 176,5; 106,6; 53,7 and 33,7 ml/s. Oil 0,5 litre is mixture with 10 litres of water. Oil viscosity is measured with simple flow gravity method. The data is analized statistically using SPSS 17.0. The result shows that vertical divider number and fluid flow rate have effect on oil viscosity.


1999 ◽  
Vol 121 (3) ◽  
pp. 145-148 ◽  
Author(s):  
D. A. Storm ◽  
R. J. McKeon ◽  
H. L. McKinzie ◽  
C. L. Redus

Transporting heavy crude oil by pipeline requires special facilities because the viscosity is so high at normal field temperatures. In some cases the oil is heated with special heaters along the way, while in others the oil may be diluted by as much as 30 percent with kerosene. Commercial drag reducers have not been found to be effective because the single-phase flow is usually laminar to only slightly turbulent. In this work we show the effective viscosity of heavy oils in pipeline flow can be reduced by a factor of 3–4. It is hypothesized that a liquid crystal microstructure can be formed so that thick oil layers slip on thin water layers in the stress field generated by pipeline flow. Experiments in a 1 1/4-in. flow loop with Kern River crude oil and a Venezuela crude oil BCF13 are consistent with this hypothesis. The effect has also been demonstrated under field conditions in a 6-in. flow loop using a mixture of North Sea and Mississippi heavy crude oils containing 10 percent brine.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Pan-Sang Kang ◽  
Ji Yu Hwang ◽  
Jong-Se Lim

Wax deposition is an extremely common occurrence affecting flow assurance in oil fields. Under the laminar flow condition, the effect of the flow rate on wax deposition is still unclear. In this study, a flow loop test was conducted by considering the depletion effect to investigate the flow effect on wax deposition in single-phase laminar flow. The measured data were compared with the estimated data using models (wax deposition, hydrodynamic, and heat transfer models). The data obtained from the models were matched with the measured data; thus, thereby model parameters were tuned and the wax deposit thickness along the pipeline was estimated with respect to flow rate. The study results indicate that the wax deposit thickness decreases when the flow rate increases at the thickest spot (TS). The volume of wax deposits increases when the flow rate increases. An increase in the flow rate increases the distance between the inlet and the location of the TS.


Author(s):  
Yi Shi ◽  
Jianjun Zhu ◽  
Haoyu Wang ◽  
Haiwen Zhu ◽  
Jiecheng Zhang ◽  
...  

Assembled in series with multistage, Electrical Submersible Pumps (ESP) are widely used in offshore petroleum production due to the high production rate and efficiency. The hydraulic performance of ESPs is subjected to the fluid viscosity. High oil viscosity leads to the degradation of ESP boosting pressure compared to the catalog curves under water flow. In this paper, the influence of fluid viscosity on the performance of a 14-stage radial-type ESP under varying operational conditions, e.g. rotational speeds 1800–3500 r/min, viscosities 25–520 cP, was investigated. Numerical simulations were conducted on the same ESP model using a commercial Computational Fluid Dynamics (CFD) software. The simulated average pump head is comparable to the corresponding experimental data under different viscosities and rotational speeds with less than ±20% prediction error. A mechanistic model accounting for the viscosity effect on ESP boosting pressure is proposed based on the Euler head in a centrifugal pump. A conceptual best-match flowrate QBM is introduced, at which the impeller outlet flow direction matches the designed flow direction. The recirculation losses caused by the mismatch of velocity triangles and other head losses resulted from the flow direction change, friction loss and leakage flow etc., are included in the model. The comparison of model predicted pump head versus experimental measurements under viscous fluid flow conditions demonstrates good agreement. The overall prediction error is less than ±10%.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


Author(s):  
Jian Pu ◽  
Zhaoqing Ke ◽  
Jianhua Wang ◽  
Lei Wang ◽  
Hongde You

This paper presents an experimental investigation on the characteristics of the fluid flow within an entire coolant channel of a low pressure (LP) turbine blade. The serpentine channel, which keeps realistic blade geometry, consists of three passes connected by a 180° sharp bend and a semi-round bend, 2 tip exits and 25 trailing edge exits. The mean velocity fields within several typical cross sections were captured using a particle image velocimetry (PIV) system. Pressure and flow rate at each exit were determined through the measurements of local static pressure and volume flow rate. To optimize the design of LP turbine blade coolant channels, the effect of tip ejection ratio (ER) from 180° sharp bend on the flow characteristics in the coolant channel were experimentally investigated at a series of inlet Reynolds numbers from 25,000 to 50,000. A complex flow pattern, which is different from the previous investigations conducted by a simplified square or rectangular two-pass U-channel, is exhibited from the PIV results. This experimental investigation indicated that: a) in the main flow direction, the regions of separation bubble and flow impingement increase in size with a decrease of the ER; b) the shape, intensity and position of the secondary vortices are changed by the ER; c) the mass flow ratio of each exit to inlet is not sensitive to the inlet Reynolds number; d) the increase of the ER reduces the mass flow ratio through each trailing edge exit to the extent of about 23–28% of the ER = 0 reference under the condition that the tip exit located at 180° bend is full open; e) the pressure drop through the entire coolant channel decreases with an increase in the ER and inlet Reynolds number, and a reduction about 35–40% of the non-dimensional pressure drop is observed at different inlet Reynolds numbers, under the condition that the tip exit located at 180° bend is full open.


Sign in / Sign up

Export Citation Format

Share Document