Pump Up the Volume - Massive Water Injection Increase through Open Water Stimulations

2021 ◽  
Author(s):  
Alistair Roy ◽  
Anastasia Bird ◽  
Samuel Bremner ◽  
Lara Winstone ◽  
Rustam Hashimov ◽  
...  

Abstract This paper describes the evolution of subsea stimulation treatments within one field including a novel dual vessel approach that was developed and successfully implemented on multiple wells. The methodology that enabled stimulations of high volume, complexity and precision is described, including observed results and opportunities for continuous improvement. In a harsh low oil price environment such cost-efficient stimulations can unlock additional potential for many subsea developments. Three West of Shetlands (WoS) injectors stimulation campaigns successfully delivered 11 subsea well treatments with a novel dual vessel batch approach in 2020 delivering operations of outstanding efficiency and reservoir results while driving costs down. A construction vessel provided remotely operated vehicle (ROV) support including deploying the well control package, whereas the stimulation vessel ran its own downline to facilitate optimized use of its dedicated pumping system and large chemical handling capacity. To enable deep water stimulation, the quick connect downline was engineered and project specific equipment installed onto the stimulation vessel allowing deployment to 450m water depth. Notable cost reductions in excess of 34% were achieved utilizing the efficiency offered by manifold entry for batch treatments to minimise the number of subsea re-connection operations while the stimulation vessel allowed much larger bulk loadouts and optimised the number of vessel loadings for continuous operations. This novel dual vessel approach for batch subsea stimulations allowed multiple well access through ‘daisy chains’ within isolated pipeline segments, while keeping injection operations live to other wells from the Glen Lyon Floating Production Storage and Offloading Vessel (FPSO) in the Schiehallion field. Improved HSE performance was achieved through reduced chemical handling and transportation. Real time data solutions for onshore monitoring were developed which aided the management of COVID-19 risks. The post-stimulation injection rate from the stimulation has signifcantly improved in all wells, resulting in large additional injection capacity for the field. Maintaining increased injection capacity has proved to be a challenge. The acquired understanding regarding water quality and longevity of treatments will allow identification of further continuous improvement opportunities to enable sustainable stimulation results.

2006 ◽  
Vol 519-521 ◽  
pp. 795-802 ◽  
Author(s):  
Dominique Daniel ◽  
Gilles Guiglionda ◽  
Pierre Litalien ◽  
Ravi Shahani

Cost-efficient designs of aluminum autobody structures consist mainly of stampings using conventional technology. Progress in metallurgy and forming processes has enabled aluminum body panels to achieve significant market share, particularly for hoods. Fast bake hardening alloys with better hemming performance were developed for improved outer panel sheet products. Specific guidelines for handling and press working were established to form aluminum panels using similar schedules and production lines as steel parts. Stamping productivity was improved by optimization of the trimming process to reduce sliver/particle generation and resulting end-of-line manual rework. Both hemming formability and trimming quality not only depend on tooling setup but also on microstructural features, which govern intrinsic alloy ductility. Targets for the next high volume aluminum car body applications, such as roof panels and doors, require higher strength and/or better formability. The challenges of complex stampings can be met with optimized alloys and lubricants, with improved numerical simulation to fine-tune stamping process parameters, and with the introduction of new technologies. Warm forming was examined as a potential breakthrough technology for high volume stamping of complex geometries.


Author(s):  
Talal Ous ◽  
Elvedin Mujic ◽  
Nikola Stosic

Water injection in twin-screw compressors was examined in order to develop effective humidification and cooling schemes for fuel cell stacks as well as cooling for compressors. The temperature and the relative humidity of the air at suction and exhaust of the compressor were monitored under constant pressure and water injection rate and at variable compressor operating speeds. The experimental results showed that the relative humidity of the outlet air was increased by the water injection. The injection tends to have more effect on humidity at low operating speeds/mass flow rates. Further humidification can be achieved at higher speeds as a higher evaporation rate becomes available. It was also found that the rate of power produced by the fuel cell stack was higher than the rate used to run the compressor for the same amount of air supplied. The efficiency of the balance of plant was, therefore, higher when more air is delivered to the stack. However, this increase in the air supply needs additional subsystems for further humidification/cooling of the balance-of-plant system.


1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


2015 ◽  
Vol 761 ◽  
pp. 566-570
Author(s):  
A.P. Puvanasvaran ◽  
N. Norazlin ◽  
C. Suk Fan

Lean behavior is an essential element to create a culture of continuous improvement culture in a service organization. Continuous improvement is defined as the never-ending efforts for improvement involving everyone in an organization. The purpose of this study is to evaluate the changes of behavioral practices after the introduction of lean tools and discuss the effects of lean behavior in developing a culture of continuous improvement in an office environment. This study adopted a self-administered questionnaire method to obtain real time data for the analysis of behavioral practices. Ford Questionnaire was used and distributed to employees of different management levels in the Business Development and IT Department. The obtained results were analyzed using the Statistical Package for the Social Sciences (SPSS) software. The same questionnaire survey was distributed after the introduction of lean tools. The expected outcomes of this study were to determine the level of lean behavioral practices in the office department and to provide a clear understanding of some lean behavioral practices that need to be nurtured among the employees in order to produce a healthy work environment.


Author(s):  
Pradyumna Challa ◽  
James Hinebaugh ◽  
A. Bazylak

In this paper, through-plane liquid water distribution is analyzed for two polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs). The experiments were conducted in an ex situ flow field apparatus with 1 mm square channels at two distinct flow rates to mimic water production rates of 0.2 and 1.5 A/cm2 in a PEMFC. Synchrotron radiography, which involves high intensity monochromatic X-ray beams, was used to obtain images with a spatial and temporal resolution of 20–25 μm and 0.9 s, respectively. Freudenberg H2315 I6 exhibited significantly higher amounts of water than Toray TGP-H-090 at the instance of breakthrough, where breakthrough describes the event in which liquid water reaches the flow fields. While Freudenberg H2315 I6 exhibited a significant overall decrease in liquid water content throughout the GDL shortly after breakthrough, Toray TGP-H-090 appeared to retain breakthrough water-levels post-breakthrough. It was also observed that the amount of liquid water content in Toray TGP-H-090 (10%.wt PTFE) decreased significantly when the liquid water injection rate increased from 1 μL/min to 8 μL/min.


2021 ◽  
Author(s):  
Muhammad Amin Rois ◽  
Willy Dharmawan

Abstract Banyu Urip reservoir management heavily rely on river-sourced water as water injection to meet Voidage Replacement Ratio target of 1. The treatment facility which consist of Raw Water Basin, Clarifiers, Multi Media Fine (MMF) Filters and Cartridge Filters, is sensitive to seasonal transition and river condition. This paper shares lesson learnt in operating such facility and troubleshooting guidance to overcome challenges of high turbidity during rainy season and lack of river water volume during drought season. To maintain the design intent of Banyu Urip (BU) water treatment facility in achieving water injection quality and quantity at reasonable cost, following activities were undertaken: [1] Critical water parameters data gathering & analysis across each unit; [2] Clarifier Chemical injection dosage verification based on laboratory test; [3] MMF Media coring inspection to assess the filtering media condition; [4] MMF Filters backwash parameters optimization; [5] MMF Filter on-off valve sequencing optimization to address water hammering issue; [6] Water injection rate management to deal with river water source availability along the year. Critical water parameters analysis revealed that chemical dosages were in-adequate to treat the five times higher turbidity coming into Clarifiers during early rain 2019. On top of this, low Raw Water Basin level at the end of long drought further contributed to jeopardize Clarifier's operation. Although in-adequate chemicals injection was resolved at early 2020, the treatment cost remained high, especially on filtration section. Media coring result on MMF Filters confirmed that the filtering media have been poisoned by carried-over mud from Clarifiers during upset. The operation of MMF Filters required extensive optimization on backwash parameters to successfully recover the MMF Filters performance without media replacement. Latest media coring on the worst MMF Filter showed that there was no more top mud layer and the amount of trapped mud had been decreased significantly. Cartridge Filter replacement interval was improved from 38 hours to 186 hours, therefore water treatment cost dropped with quite significant margin. Additionally, the availability of each MMF Filters was also improved. At the same time, the high water injection rate during 2020 rainy season, had successfully increased reservoir pressure buffer up to its maximum point as the anticipation of prolonged drought season. This paper provides the troubleshooting guidance for MMF Filter application in season-prone water treatment facility including insights on interpretation of media coring result and linking it back to optimization strategy on the MMF Filters drain down time for effective backwash process without having excessive media loss.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.


2021 ◽  
Author(s):  
Ying Wang ◽  
Xin Zheng ◽  
Li Li ◽  
Jianbo Yuan ◽  
Minh Vo ◽  
...  

Abstract This paper describes the successful resin squeeze operation to seal off a micro-annulus between the 7" and 9-5/8" casings on a sour gas well located in Sichuan Basin, China. Integrated plug and abandonment were also essential to eliminate the risk of potential H2S exposure presented to the residents around this area. Resin, as a new alternative sealing technology, was technically evaluated, laboratory tested, and then chosen for squeezing into a micro-annulus to stop gas migration for its solids-free and low-viscosity properties compared to a conventional cement. The squeeze job was designed by taking the casing yield strength as the pressure limit (Confirmed by caliper log the casing was in good condition) and determining the resin pumping volume based on estimated resin squeeze volume and the remaining resin plug length. A "Braden-head" squeeze method was selected considering the low injection rate observed during the water injection test. Both stage-up and stage down squeezing techniques (hesitation squeeze of increasing and decreasing wellhead pressure stage by stage) were performed to maximize the injected volume of the resin sealant. A total of 800 L of 9.16 lb/gal resin was placed into a 4 ft milled interval, and 50 L were successfully squeezed into the 7" × 9-5/8" casing annulus. An operational learning was that resin injection is greatly improved during the stage-down process while keeping the casing annulus open. Evidence that the micro-annulus leak path had been sealed was an observation of 0 psi on the 7" × 9-5/8" casing annulus after resin fully set. The method of locating the optimal spot to squeeze resin involved noise logging to analyze for a potential gas source in the annulus. The post job results confirmed that resin acts effectively as an annular barrier in the repair of gas leaks in the small volume situations where micro-annulus exists in the cement sheath. For large voids such as inside 7" casing, a combination of cement plug plus mechanical barrier is recommended to be placed directly above resin plugs to complete permanent plug and abandonment of the wellbore.


2021 ◽  
Author(s):  
Nasser M. Al-Hajri ◽  
Akram R. Barghouti ◽  
Sulaiman T. Ureiga

Abstract This paper will present an alternative calculation technique to predict wellbore crossflow rate in a water injection well resulting from a casing leak. The method provides a self-governing process for wellbore related calculations inspired by the fourth industrial revolution technologies. In an earlier work, calculations techniques were presented which do not require the conventional use of downhole flowmeter (spinner) to obtain the flow rate. Rather, continuous surface injection data prior to crossflow development and shut-in well are used to estimate the rate. In this alternative methodology, surface injection data post crossflow development are factored in to calculate the rate with the same accuracy. To illustrate the process an example water injector well is used. To quantify the casing leak crossflow rate, the following calculation methodology was applied:Generate a well performance model using pre-crossflow injection data. Normal modeling techniques are applied in this step to obtain an accurate model for the injection well as a baseline case.Generate an imaginary injection well model: An injection well mimicking the flow characteristics and properties of the water injector is envisioned to simulate crossflow at flowing (injecting) conditions. In this step, we simulate an injector that has total depth up to the crossflow location only and not the total depth of the example water well.Generate the performance model for the secondary formation using post crossflow data: The total injection rate measured at surface has two portions: one portion goes into the shallower secondary formation and another goes into the deeper (primary) formation. The modeling inputs from the first two steps will be used here to obtain the rate for the downhole formation at crossflow conditions.Generate an imaginary production well model: The normal model for the water injector will be inversed to obtain a production model instead. The inputs from previous steps will be incorporated in the inverse modeling.Obtaining the crossflow rate at shut-in conditions: Performance curves generated from step 3 & 4 will be plotted together to obtain an intersection that corresponds to the crossflow rate at shut-in conditions. This numerical methodology was analytically derived and the prediction results were verified on syntactic field data with very high accuracy. The application of this model will benefit oil operators by avoiding wireline logging costs and associated safety risks with mechanical intervention.


Sign in / Sign up

Export Citation Format

Share Document