Design Researches in Making In-Situ Thermal Foam System as a New Enhanced Heavy Oil Recovery Method

2021 ◽  
Author(s):  
Vladimir Nikolaevich Kozhin ◽  
Andrey Valerevich Mikhailov ◽  
Konstantin Vasilievich Pchela ◽  
Ivan Ivanovich Kireev ◽  
Sergey Valerevich Demin ◽  
...  

Abstract The paper presents the results of lab and filtration studies aimed at improving the procedure of thermal/gas/chemical effect (TGCE) with the generation of thermogenic system in reservoir conditions, proposed as an alternative to the methods of increasing oil recovery, such as water-gas effect procedure and foam injection process. The objects of research were thermal/gas generating compositions at the basis of sodium salts of sulfamic and nitric acids. Moreover, the influence of the ionic composition of the aqueous solution and temperature on the surface properties of the attracted solutions of surfactants (surfactants) was also evaluated. Filtration tests have shown that the use of a thermal/gas generating composition leads to additional displacement of high-viscous oil. The introduction of surfactants in the thermal/gas generating composition promotes foaming in the porous medium of the reservoir model and prevents gas breakthrough that leads to an increase in the oil displacement factor up to 24 %.

1979 ◽  
Vol 19 (04) ◽  
pp. 242-252 ◽  
Author(s):  
R.S. Metcalfe ◽  
Lyman Yarborough

Abstract Carbon dioxide flooding under miscible conditions is being developed as a major process for enhanced oil recovery. This paper presents results of research studies to increase our understanding of the multiple-contact miscible displacement mechanism for CO2 flooding. Carbon dioxide displacements of three synthetic oils of increasing complexity (increasing number of hydrocarbon components) are described. The paper concentrates on results of laboratory flow studies, but uses results of phase-equilibria and numerical studies to support the conclusions.Results from studies with synthetic oils show that at least two multiple-contact miscible mechanisms, vaporization and condensation, can be identified and that the phase-equilibria data can be used as a basis for describing the mechanism. The phase-equilibria change with varying reservoir conditions, and the flow studies show that the miscible mechanism depends on the phase-equilibria behavior. Qualitative predictions with mathematical models support our conclusions.Phase-equilibria data with naturally occurring oils suggest the two mechanisms (vaporization and condensation) are relevant to CO2 displacements at reservoir conditions and are a basis for specifying the controlling mechanisms. Introduction Miscible-displacement processes, which rely on multiple contacts of injected gas and reservoir oil to develop an in-situ solvent, generally have been recognized by the petroleum industry as an important enhanced oil-recovery method. More recently, CO2 flooding has advanced to the position (in the U.S.) of being the most economically attractive of the multiple-contact miscibility (MCM) processes. Several projects have been or are currently being conducted either to study or use CO2 as an enhanced oil-recovery method. It has been demonstrated convincingly by Holm and others that CO2 can recover oil from laboratory systems and therefore from the swept zone of petroleum reservoirs using miscible displacement. However, several contradictions seem to exist in published results.. These authors attempt to establish the mechanism(s) through which CO2 and oil form a miscible solvent in situ. (The solvent thus produced is capable of performing as though the two fluids were miscible when performing as though the two fluids were miscible when injected.) In addition, little experimental work has been published to provide support for the mechanisms of multiple-contact miscibility, as originally discussed by Hutchinson and Braun.One can reasonably assume that the miscible CO2 process will be related directly to phase equilibria process will be related directly to phase equilibria because it involves intimate contact of gases and liquids. However, no data have been published to indicate that the mechanism for miscibility development may differ for varying phase-equilibria conditions.This paper presents the results of both flow and phase-equilibria studies performed to determine the phase-equilibria studies performed to determine the mechanism(s) of CO2 multiple-contact miscibility. These flow studies used CO2 to displace three multicomponent hydrocarbon mixtures under first-contact miscible, multiple-contact miscible, and immiscible conditions. Results are presented to support the vaporization mechanism as described by Hutchinson and Braun, and also to show that more than one mechanism is possible with CO2 displacements. The reason for the latter is found in the results of phase-equilibria studies. SPEJ P. 242


SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 130-137 ◽  
Author(s):  
Chuan Lu ◽  
Huiqing Liu ◽  
Wei Zhao ◽  
Keqin Lu ◽  
Yongge Liu ◽  
...  

Summary In this study, the effects of viscosity-reducer (VR) concentration, salinity, water/oil ratio (WOR), and temperature on the performance of emulsions are examined on the basis of the selected VR. Different VR-injection scenarios, including single-VR injection and coinjection of steam and VR, are conducted after steamflooding by use of single-sandpack models. The results show that high VR concentration, high WOR, and low salinity are beneficial to form stable oil/water emulsions. The oil recoveries of steamflooding for bitumen and heavy oil are approximately 31 and 52%, respectively. The subsequent VR flooding gives an incremental oil recovery of 5.2 and 6.4% for bitumen and heavy oil, respectively. Flooding by steam/VR induces an additional oil recovery of 8.4–11.0% for bitumen and 12.1% for heavy oil. High-temperature steam favors the peeling off of oil and improving its fluidity, as well as the in-situ emulsions. VR solution is beneficial for the oil dispersion and further viscosity reduction. The coinjection of high-temperature steam and VR is much more effective for additional oil production in viscous-oil reservoirs.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4633 ◽  
Author(s):  
Oscar E. Medina ◽  
Yira Hurtado ◽  
Cristina Caro-Velez ◽  
Farid B. Cortés ◽  
Masoud Riazi ◽  
...  

This study aims to evaluate a high-performance nanocatalyst for upgrading of extra-heavy crude oil recovery and at the same time evaluate the capacity of foams generated with a nanofluid to improve the sweeping efficiency through a continuous steam injection process at reservoir conditions. CeO2±δ nanoparticles functionalized with mass fractions of 0.89% and 1.1% of NiO and PdO, respectively, were employed to assist the technology and achieve the oil upgrading. In addition, silica nanoparticles grafted with a mass fraction of 12% polyethylene glycol were used as an additive to improve the stability of an alpha-olefin sulphonate-based foam. The nanofluid formulation for the in situ upgrading process was carried out through thermogravimetric analysis and measurements of zeta potential during eight days to find the best concentration of nanoparticles and surfactant, respectively. The displacement test was carried out in different stages, including, (i) basic characterization, (ii) steam injection in the absence of nanofluids, (iii) steam injection after soaking with nanofluid for in situ upgrading, (iv) N2 injection, and (v) steam injection after foaming nanofluid. Increase in the oil recovery of 8.8%, 3%, and 5.5% are obtained for the technology assisted by the nanocatalyst-based nanofluid, after the nitrogen injection, and subsequent to the thermal foam injection, respectively. Analytical methods showed that the oil viscosity was reduced 79%, 77%, and 31%, in each case. Regarding the asphaltene content, with the presence of the nanocatalyst, it decreased from 28.7% up to 12.9%. Also, the American Petroleum Institute (API) gravity values increased by up to 47%. It was observed that the crude oil produced after the foam injection was of higher quality than the crude oil without treatment, indicating that the thermal foam leads to a better swept of the porous medium containing upgraded oil.


SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Yaoze Cheng ◽  
Yin Zhang ◽  
Abhijit Dandekar ◽  
Jiawei Li

Summary Shallow reservoirs on the Alaska North Slope (ANS), such as Ugnu and West Sak-Schrader Bluff, hold approximately 12 to 17 × 109 barrels of viscous oil. Because of the proximity of these reservoirs to the permafrost, feasible nonthermal enhanced oil recovery (EOR) methods are highly needed to exploit these oil resources. This study proposes three hybrid nonthermal EOR techniques, including high-salinity water (HSW) injection sequentially followed by low-salinity water (LSW) and low-salinity polymer (LSP) flooding (HSW-LSW-LSP), solvent-alternating-LSW flooding, and solvent-alternating-LSP flooding, to recover ANS viscous oils. The oil recovery performance of these hybrid EOR techniques has been evaluated by conducting coreflooding experiments. Additionally, constant composition expansion (CCE) tests, ζ potential determinations, and interfacial tension (IFT) measurements have been conducted to reveal the EOR mechanisms of the three proposed hybrid EOR techniques. Coreflooding experiments and IFT measurements have been conducted at reservoir conditions of 1,500 psi and 85°F, while CCE tests have been carried out at a reservoir temperature of 85°F. ζ potential determinations have been conducted at 14.7 psi and 77°F. The coreflooding experiment results have demonstrated that all of the three proposed hybrid EOR techniques could result in much better performance in reducing residual oil saturation than waterflooding and continuous solvent flooding in viscous oil reservoirs on ANS, implying better oil recovery potential. In particular, severe formation damage or blockage at the production end occurred when natural sand was used to prepare the sandpack column, indicating that the natural sand may have introduced some unknown constituents that may react with the injected solvent and polymer, resulting in a severe blocking issue. Our investigation on this is ongoing, and more detailed studies are being conducted in our laboratory. The CCE test results demonstrate that more solvent could be dissolved into the tested viscous oil with increasing pressure, simultaneously resulting in more oil swelling and viscosity reduction. At the desired reservoir conditions of 1,500 psi and 85°F, as much as 60 mol% of solvent could be dissolved into the ANS viscous oil, resulting in more than 31% oil swelling and 97% oil viscosity reduction. Thus, the obvious oil swelling and significant viscosity reduction resulting from solvent injection could lead to much better microscopic displacement efficiency during the solvent flooding. The ζ potential determination results illustrate that LSW resulted in more negative ζ potential than HSW on the interface between sand and water, indicating that lowering the salinity of injected brine could result in the sand surface being more water-wet, but adding polymer to the LSW could not further enhance the water wetness. The IFT measurement results show that the IFT between the tested ANS viscous oil and LSW is higher than that between the tested viscous oil and HSW, which conflicts with the commonly recognized IFT reduction effect by LSW flooding. Thus, the EOR theory of the LSW flooding in our proposed hybrid techniques may be attributed to low-salinity effects (LSEs) such as multi-ion exchange, expansion of electrical double layer, and salting-in effect, while water wetness enhancement may benefit the LSW flooding process to some extent. The LSP’s viscosity is much higher than the viscosities of LSW and solvent, so LSP injection could result in better mobility control in the tested viscous oil reservoirs, leading to improvement of macroscopic sweep efficiency. Combining these EOR theories, the proposed hybrid EOR techniques have the potential to significantly increase oil recovery in viscous oil reservoirs on ANS by maximizing the overall displacement efficiency.


2019 ◽  
Vol 9 (8) ◽  
pp. 1686 ◽  
Author(s):  
Sai Wang ◽  
Kouqi Liu ◽  
Juan Han ◽  
Kegang Ling ◽  
Hongsheng Wang ◽  
...  

The low recovery of oil from tight liquid-rich formations is still a major challenge for a tight reservoir. Thus, supercritical CO2 flooding was proposed as an immense potential recovery method for production improvement. While up to date, there have been few studies to account for the formation properties’ variation during the CO2 Enhanced Oil Recovery (EOR) process, especially investigation at the micro-scale. This work conducted a series of measurements to evaluate the rock mechanical change, mineral alteration and the pore structure properties’ variation through the supercritical CO2 (Sc-CO2) injection process. Corresponding to the time variation (0 days, 10 days, 20 days, 30 days and 40 days), the rock mechanical properties were analyzed properly through the nano-indentation test, and the mineralogical alterations were quantified through X-ray diffraction (XRD). In addition, pore structures of the samples were measured through the low-temperature N2 adsorption tests. The results showed that, after Sc-CO2 injection, Young’s modulus of the samples decreases. The nitrogen adsorption results demonstrated that, after the CO2 injection, the mesopore volume of the sample would change as well as the specific Brunauer–Emmett–Teller (BET) surface area which could be aroused from the chemical reactions between the CO2 and some authigenic minerals. XRD analysis results also indicated that mesopore were altered due to the chemical reaction between the injected Sc-CO2 and the minerals.


SPE Journal ◽  
2008 ◽  
Vol 13 (04) ◽  
pp. 432-439 ◽  
Author(s):  
Edward J. Lewis ◽  
Eric Dao ◽  
Kishore K. Mohanty

Summary Evaluation and improvement of sweep efficiency are important for miscible displacement of medium-viscosity oils. A high-pressure quarter-five-spot cell was used to conduct multicontact miscible (MCM) water-alternating-gas (WAG) displacements at reservoir conditions. A dead reservoir oil (78 cp) was displaced by ethane. The minimum miscibility pressure (MMP) for ethane with the reservoir oil is approximately 4.14 MPa (600 psi). Gasflood followed by waterflood improves the oil recovery over waterflood alone in the quarter five-spot. As the pressure decreases, the gasflood oil recovery increases slightly in the pressure range of 4.550-9.514 MPa (660-1,380 psi) for this undersaturated viscous oil. WAG improves the sweep efficiency and oil recovery in the quarter five-spot over the continuous gas injection. WAG injection slows down gas breakthrough. A decrease in the solvent amount lowers the oil recovery in WAG floods, but significantly more oil can be recovered with just 0.1 pore volume (PV) solvent (and water) injection than with waterflood alone. Use of a horizontal production well lowers the sweep efficiency over the vertical production well during WAG injection. Sweep efficiency is higher for the nine-spot pattern than for the five-spot pattern during gas injection. Sweep efficiency during WAG injection increases with the WAG ratio in the five-spot model. Introduction As the light-oil reservoirs get depleted, there is increasing interest in producing more-viscous-oil reservoirs. Thermal techniques are appropriate for heavy-oil reservoirs. But gasflooding can play an important role in medium-viscosity-oil (30-300 cp) reservoirs and is the subject of this paper. Roughly 20 billion to 25 billion bbl of medium-weight- to heavy-weight-oil deposits are estimated in the North Slope of Alaska. Approximately 10 billion to 12 billion bbl exist in West Sak/Schrader Bluff formation alone (McGuire et al. 2005). Miscible gasflooding has been proved to be a cost-effective enhanced oil recovery technique. There are approximately 80 gasflooding projects (CO2, flue gas, and hydrocarbon gas) in the US and approximately 300,000 B/D is produced from gasflooding, mostly from light-oil reservoirs (Moritis 2004). The recovery efficiency [10-20% of the original oil in place (OOIP)] and solvent use (3-12 Mcf/bbl) need to be improved. The application of miscible and immiscible gasflooding needs to be extended to medium-viscosity-oil reservoirs. McGuire et al. (2005) have proposed an immiscible WAG flooding process, called viscosity-reduction WAG, for North Slope medium-visocisty oils. Many of these oils are depleted in their light-end hydrocarbons C7-C13. When a mixture of methane and natural gas liquid is injected, the ethane and components condense into the oil and decrease the viscosity of oil, making it easier for the water to displace the oil. From reservoir simulation, this process is estimated to enhance oil recovery compared to waterflood from 19 to 22% of the OOIP, which still leaves nearly 78% of the OOIP. Thus, further research should be directed at improving the recovery efficiency of these processes for viscous-oil reservoirs. Recovery efficiency depends on microscopic displacement efficiency and sweep efficiency. Microscopic displacement efficiency depends on pressure, (Dindoruk et al. 1992; Wang and Peck 2000) composition of the solvent and oil (Stalkup 1983; Zick 1986), and small-core-scale heterogeneity (Campbell and Orr 1985; Mohanty and Johnson 1993). Sweep efficiency of a miscible flood depends on mobility ratio (Habermann 1960; Mahaffey et al. 1966; Cinar et al. 2006), viscous-to-gravity ratio (Craig et al. 1957; Spivak 1974; Withjack and Akervoll 1988), transverse Peclet number (Pozzi and Blackwell 1963), well configuration, and reservoir heterogeneity, (Koval 1963; Fayers et al. 1992) in general. The effect of reservoir heterogeneity is difficult to study at the laboratory scale and is addressed mostly by simulation (Haajizadeh et al. 2000; Jackson et al. 1985). Most of the laboratory sweep-efficiency studies (Habermann 1960; Mahaffey et al. 1966; Jackson et al. 1985; Vives et al. 1999) have been conducted with first-contact fluids or immiscible fluids at ambient pressure/temperature and may not be able to respresent the displacement physics of multicontact fluids at reservoir conditions. In fact, four methods are proposed for sweep improvement in gasflooding: WAG (Lin and Poole 1991), foams (Shan and Rossen 2002), direct thickeners (Xu et al. 2003), and dynamic-profile control in wells (McGuire et al. 1998). To evaluate any sweep-improvement methods, one needs controlled field testing. Field tests generally are expensive and not very controlled; two different tests cannot be performed starting with identical initial states, and, thus, results are often inconclusive. Field-scale modeling of compositionally complex processes can be unreliable because of inadequate representation of heterogeneity and process complexity in existing numerical simulators. There is a need to conduct laboratory sweep-efficiency studies with the MCM fluids at reservoir conditions to evaluate various sweep-improvement techniques. Reservoir-conditions laboratory tests can be used to calibrate numerical simulators and evaluate qualitative changes in sweep efficiency. We have built a high-pressure quarter-five-spot model where reservoir-conditions multicontact WAG floods can be conducted and evaluated (Dao et al. 2005). The goal of this paper is to evaluate various WAG strategies for a model oil/multicontact solvent in this high-pressure laboratory cell. In the next section, we outline our experimental techniques. The results are summarized in the following section.


1963 ◽  
Vol 3 (01) ◽  
pp. 53-58 ◽  
Author(s):  
W.E. Showalter

SHOWALTER, W.E., UNION OIL CO. OF CALIFORNIA, BREA, CALIF. Abstract This paper discusses some of the results of combustion-drive tests which were made in a test cell using a sand bed 10 in. in diameter × 10-ft long. The test method is illustrated and described.The relationship between the API gravity of the in situ oil and the amount of air required for combustion drive is discussed n detail. Other things constant, the air requirement for combustion drive increases as the API gravity of the in situ oil decreases. If the test results apply to actual reservoirs, the lowest-priced oils may cost the most to recover by this method.Information is shown which indicates that the effect of pressure on the amount of hydrocarbon burned is not large. A method of predicting air requirements from the API gravity of the in situ oil is presented. Introduction Combustion drive is the term used to identify the process of interstitial or in situ burning as an oil recovery method. Part of the in situ oil is burned to generate the energy needed to produce the remainder of the oil. Combustion drive as an oil recovery mechanism remains an economic uncertainty in spite of all the work that has been done by the industry in both laboratory and field. This paper will show some of the results of tests which were made in a test cell for the purpose of studying the nature of the combustion-drive process. It will present data which indicate that the API gravity of the in situ oil is a significant indicator of the amount of air required to drive a burning front through oil sand. Air requirement varies inversely as the API gravity of the in situ oil. EXPERIMENTAL The tests were performed in a cell which utilized a cylindrical sand section 10 in. in diameter × 10-ft long. The thin-walled metal pipe which held the sand was wound with twenty external electrical resistance heaters which, by means of an automatic controller, maintained adjacent sections of the wall of the pipe at temperatures equal to the temperatures of the contained sand. Each heater covered 6 linear in. of the pipe. By this means lateral heat loss from the sand section was minimized, thereby causing the sand section to simulate more closely a horizontal increment of a combustion-drive reservoir.Fig. 1 shows a schematic diagram of the test assembly.Thermocouplestomeasurethetemperature in the sand were located every 6 in. along the length of the sand section. The pipe containing the sand was enclosed in a cell designed for an operating pressure of 500 psig. The inlet air pressure was controlled at the inlet, and the gas flow rate was controlled and measured at the outlet of the cell.The oil sand used for the tests was prepared by mixing first water and then oil with the non-consolidated sand using a closed mixer similar to a cement mixer. Table 1 shows a screen analysis of the sand. Ninety percent of the sand was 100 mesh or finer. This sand was a mixture of 80 per cent No. 120 Nevada White Sand and 20 per cent Tennessee Hi-Fusion Moulding Sand No. 3. The Nevada sand was a clean silica sand. SPEJ P. 53^


2018 ◽  
Vol 7 (2) ◽  
pp. 1-13
Author(s):  
Madi Abdullah Naser ◽  
Mohamed Erhayem ◽  
Ali Hegaig ◽  
Hesham Jaber Abdullah ◽  
Muammer Younis Amer ◽  
...  

Oil recovery process is an essential element in the oil industry, in this study, a laboratory study to investigate the effect of temperature and aging time on oil recovery and understand some of the mechanisms of seawater in the injection process. In order to do that, the sandstone and carbonate cores were placed in the oven in brine to simulate realistic reservoir conditions. Then, they were aged in crude oil in the oven. After that, they were put in the seawater to recover, and this test is called a spontaneous imbibition test. The spontaneous imbibition test in this study was performed at room temperature to oven temperature 80 oC with different sandstone and carbonate rock with aging time of 1126 hours. The result shows that the impact of seawater on oil recovery in sandstone is higher than carbonate. At higher temperature, the oil recovery is more moderate than low temperature. Likewise, as the aging time increase for both sandstone and carbonate rocks the oil recovery increase. 


2018 ◽  
Vol 32 (1) ◽  
pp. 360-372 ◽  
Author(s):  
Chao-Yu Sie ◽  
Bradley Nguyen ◽  
Marco Verlaan ◽  
Orlando Castellanos-Diaz ◽  
Kelli Adiaheno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document