Interfacial Tension Measurements at Reservoir Conditions Using X-Ray Imaging

2021 ◽  
Author(s):  
Vera Pletneva ◽  
Dmitry Korobkov ◽  
Anton Kornilov ◽  
Ilia Safonov ◽  
Ivan Yakimchuk ◽  
...  

Abstract Interfacial tension (IFT) is one of the key parameters governing multiphase flow in reservoir. One of standard IFT measurement techniques is pendant drop shape analysis, which includes an acquisition of the drop snapshots in visible light. Hence, the method is limited by optical transparency of an external fluid. Here we present a new approach, which is free from this limitation. It uses X-rays as an illumination source and provides a number of advantages and additional opportunities in the study of fluid interface behavior. Proposed method includes a drop generation inside a uniquely designed X-ray transparent cell for high pressure and temperature (HPHT) measurements placed inside an X-ray scanner and imaging of its evolution with time till equilibrium state. Since X-ray images significantly differ from the classical optical ones, a novel algorithm was developed for accurate drop shape detection and further mathematical processing for IFT value calculation. As a result, an IFT value evolution curve for a pair of fluids is obtained. Depending on relative densities of the fluids, different experimental schemes can be implemented: pendant or rising drop. The method was validated on various neat fluids with well-known IFT values and then was successfully applied for different real fluids systems. This work demonstrates the unique laboratory studies carried out on different liquid-fluid systems showing that the developed methodology works well at elevated pressure and temperature conditions. The developed method unlocks the possibility for an appropriate IFT measurements in surfactant-rich oil-water systems as well as in systems near the phase transition such as gas-condensates at a wide range of thermobaric reservoir conditions and increases feasibility of HPHT measurements due to simplification of the measuring system design.

2019 ◽  
Vol 92 ◽  
pp. 01005
Author(s):  
Georgios Birmpilis ◽  
Reza Ahmadi-Naghadeh ◽  
Jelke Dijkstra

X-ray scattering is a promising non-invasive technique to study evolving nano- and micromechanics in clays. This study discusses the experimental considerations and a successful method to enable X-ray scattering to study clay samples at two extreme stages of consolidation. It is shown that the proposed sample environment comprising flat capillaries with a hydrophobic coating can be used for a wide range of voids ratios ranging from a clay suspension to consolidated clay samples, that are cut from larger specimens of reconstituted or natural clay. The initial X-ray scattering results using a laboratory instrument indicate that valuable information on, in principal evolving, clay fabric can be measured. Features such as characteristic distance between structural units and particle orientations are obtained for a slurry and a consolidated sample of kaolinite. Combined with other promising measurement techniques from Materials Science the proposed method will help advance the contemporary understanding on the behaviour of dense colloidal systems of clay, as it does not require detrimental sample preparation


2018 ◽  
Vol 620 ◽  
pp. A18 ◽  
Author(s):  
C. H. A. Logan ◽  
B. J. Maughan ◽  
M. N. Bremer ◽  
P. Giles ◽  
M. Birkinshaw ◽  
...  

Context. The XMM-XXL survey has used observations from the XMM-Newton observatory to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF (FWHM ~ 6″ on-axis) of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z > 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra, we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, 9 are free from significant point source contamination, either having no previously unresolved sources detected by Chandra or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically selected cluster candidates associated with faint XXL sources that were not classed as clusters. Of these, three were shown to be AGN by Chandra, one is a cluster whose XXL survey flux was highly contaminated by unresolved AGN, while three appear to be uncontaminated clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z > 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


2016 ◽  
Vol 12 (S329) ◽  
pp. 355-358
Author(s):  
Peter Kretschmar ◽  
Silvia Martínez-Núñez ◽  
Enrico Bozzo ◽  
Lidia M. Oskinova ◽  
Joachim Puls ◽  
...  

AbstractStrong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretor’s gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexandra Guerreiro ◽  
Nicholas Chatterton ◽  
Eleanor M. Crabb ◽  
Jon P. Golding

Abstract Background A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions. Results Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage. Conclusions Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success.


1997 ◽  
Vol 3 (S2) ◽  
pp. 851-852
Author(s):  
H. Ade

Infrared, Raman, and fluorescence/luminescence microspectroscopy/microscopy in many instances seek to provide high sensitivity compositional and functional information that goes beyond mere elemental composition. This goal is shared by NEXAFS microscopy, in which Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy is employed to provide chemical sensitivity and can be relatively easily adopted in a scanning transmission x-ray microscope (STXM). In addition to compositional information, NEXAFS microscopy can exploit the dependence of x-ray absorption resonances on the bond orientation relative to the linearly polarized x rays (linear dichroism microscopy). For compositional analysis, NEXAFS microscopy is analogous to Electron Energy Loss Spectroscopy (EELS) in an electron microscope. However, when utilizing near edge spectral features, NEXAFS microscopy requires a considerable lower dose than EELS microscopy which makes it very suitable to studying radiation sensitive materials such as polymers. NEXAFS has shown to have excellent sensitivity to a wide range of moieties in polymers, including sensitivity to substitution isomerism.


It is now some ten years since it was first realised that, in common with natural and artificial cellulose fibres, animal fibres with a protein basis are in many cases sufficiently crystalline to yield a pronounced interference figure when examined with monochromatic X-rays. Such “ X-ray fibre diagrams ” were reported in 1921 by HERZOG and JANCKE* for muscle, nerve, sinew, and hair, and in 1924 similar photographs from human hair were obtained by one of the present writers. From an X-ray examination of wool it was concluded by THREADGOLD that “ there is no evidence for assuming the wool fibres and yarns examined to have a crystalline structure,” but in 1927 EWLES and SPEAKMAN had already obtained wool interference figures precisely similar to those previously obtained from hair. The two last-named authors endeavoured to interpret their results in the light of certain physical properties, but it has since become clear that the problem of hair structure is sufficiently complex to necessitate an X-ray study of a wide range of materials under as great a variety of conditions as possible. The present communication is an account of the preliminary results of such an investigation. Over a hundred X-ray photographs have been taken, using copper K-radiation filtered of the MATHS FORMULA line by nickel foil about 1/100 mm. thick. The “ slit” was a rectangular aperture, 4 cm. x 0.5mm., the scattered rays from which were screened off in the usual manner by a secondary slit.


1998 ◽  
Vol 5 (3) ◽  
pp. 679-681 ◽  
Author(s):  
Yasuharu Kashihara ◽  
Hiroshi Yamazaki ◽  
Kenji Tamasaku ◽  
Tetsuya Ishikawa

The rotated-inclined double-crystal monochromator (RIDCM) has been adopted to reduce the heat load from third-generation undulator radiation. The position of the exit X-rays from RIDCM has been calculated as a function of X-ray energy on the basis of diffraction theory including refraction effects. The results show that the positions of the exit X-rays vary over a wide range due to asymmetric reflection. Methods of fixing the exit position in RIDCM are also discussed.


IUCrJ ◽  
2017 ◽  
Vol 4 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Demet Kekilli ◽  
Tadeo Moreno-Chicano ◽  
Amanda K. Chaplin ◽  
Sam Horrell ◽  
Florian S. N. Dworkowski ◽  
...  

Powerful synergies are available from the combination of multiple methods to study proteins in the crystalline form. Spectroscopies which probe the same region of the crystal from which X-ray crystal structures are determined can give insights into redox, ligand and spin states to complement the information gained from the electron-density maps. The correct assignment of crystal structures to the correct protein redox and ligand states is essential to avoid the misinterpretation of structural data. This is a particular concern for haem proteins, which can occupy a wide range of redox states and are exquisitely sensitive to becoming reduced by solvated electrons generated from interactions of X-rays with water molecules in the crystal. Here, single-crystal spectroscopic fingerprinting has been applied to investigate the laser photoreduction of ferric haem in cytochromec′. Furthermore,in situX-ray-driven generation of haem intermediates in crystals of the dye-decolourizing-type peroxidase A (DtpA) fromStreptomyces lividansis described.


Keyword(s):  
X Rays ◽  
X Ray ◽  
The Past ◽  

1. It is well known that the accurate measurement of the energies of the secondary cathode rays excited by homogeneous X-rays can yield results capable of supplementing our knowledge of the most probable values of the fundamental atomic constants. this application of the "magnetic spectrograph" has already been discussed by one of us in some detail, and kretschmar has published an account of accurate measurements on X-ray electrons, from which he has deduced very consistent values of e / m 0 . In this work Kretschmar used molybdenum K radiations, and produced his magnetic fields by a large solenoid. 2. We have during the past fifteen months photographed a large number of secondary cathode-ray spectra, using cooper K as primary X radiation. For a few elements, for which the results will be detailed later in this paper, we have made very careful measurements of the energies, cross-checking the observations by working in a wide range magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document