Multihazard Risk Aggregation Approach for Quantitative Risk Assessment of Upstream Oil and Gas Facilities

2021 ◽  
Author(s):  
Luca Decarli ◽  
Anna Crivellari ◽  
Laura La Rosa ◽  
Enrico Zio ◽  
Francesco Di Maio ◽  
...  

Abstract For the design and operation of Oil and Gas (O&G) facilities, a Quantitative Risk Assessment (QRA) should be performed to quantify the risk of major accidents due to multiple hazards and sources at the plant level, thus allowing the effective identification and allocation of safety barriers. In this work, a novel approach for the multi-hazard and multi-source aggregation of risks is proposed, accounting for the uncertainties typically unexpressed in a conventional QRA (both on the frequency and severity of the accidental scenarios). The multi-hazard risk assessment framework proposed is applied to assess the Location-Specific Individual Risk (LSIR) for a representative Upstream O&G plant (case study), using a model based on multistate Bayesian Networks (BNs) for different functional units, each one undergoing an initiating event of Loss Of Primary Containment (LOPC). Estimates of frequency and severity for each possible accident scenario are aggregated to eventually calculate the overall LSIR. Moreover, LSIR's confidence intervals are provided to describe the uncertainty associated to the estimates, and the frequency and severity contributions to risk are derived for targeted prioritization of the safety barriers in view of the risk reduction.

2021 ◽  
Vol 13 (21) ◽  
pp. 12169
Author(s):  
Robertas Alzbutas ◽  
Mindaugas Vaisnoras ◽  
Inga Saruniene ◽  
Ricardas Krikstolaitis ◽  
Mindaugas Valincius ◽  
...  

One of the goals of any oil terminal is to make a business while avoiding hazardous events and harmful effects for both humans and the environment. This can be achieved by creating a safe working place as well as by performing safe and acceptable activities regarding the impact on surrounding objects, including residential and industrial areas. The aim of the hazard analysis of the oil terminal is to assess the risks related to hazardous events or phenomena and to evaluate whether the assessed risks are acceptable. The hazard analysis and assessment of risk are also used for risk reduction while examining and limiting hazardous scenarios that, for instance, involve the loss-of-containment of flammable or combustible material. In this paper, the authors aim to contribute to risk research by providing a comprehensive methodology of risk assessment for oil terminals with case study results and discussion on features of the methodology, risk aggregation, its applicability for risk reduction, and industrial interests. The performed study considered the “Klaipedos Nafta AB” (an operator of the Klaipeda Oil Terminal, Lithuania) case study regarding hazardous materials that might be released from various tanks, devices, and associated pipelines. The performed quantitative risk assessment has enabled the determination of the probability regarding whether releases would ignite and, for instance, cause explosion. In the case study, the estimate of probability, i.e., the frequency, and the possible consequences of the hazardous events were evaluated, and both mitigation and risk reduction measures were also considered.


Author(s):  
Maher Nessim ◽  
Shahani Kariyawasam

Abstract The lack of established acceptance criteria has been one of the key challenges to the application of quantitative risk assessment (QRA) techniques in the Canadian pipeline industry. While a wide range of such criteria have been developed and published, it remains difficult for most operators to commit to specific criteria because such criteria may not be acceptable to all stakeholders. Recognizing this limitation, the Canadian Standards Association formed a Risk Management Task Force (RMTF) under the Technical Committee for the Z662 Standard on the Oil and Gas Pipeline Systems to propose criteria for potential inclusion in its non-mandatory Annex on Risk Assessment. This paper describes the criteria that have been developed by the RMTF and provides the background information needed for users to understand and use them correctly. The discussion includes: a summary of the measures used to quantify the safety risk associated with an ignited product release; a summary of established international and Canadian criteria that have been considered; a description and interpretation of the ALARP (As Low As Reasonably Practicable) principle; and the rationale used by the RMTF to select specific individual risk and societal risk criteria for CSA Z662. The proposed criteria are also compared to the criteria underpinning other risk-based parts of the Z662 Standard, including Annexes C and O. Guidance is provided on the analysis assumptions, methods and parameters required to ensure that the risk calculations produce results that are consistent with the definition and intent of the criteria. Key issues addressed by the guidance include the definition of individual risk (i.e. location risk versus personal risk), the pipeline length over which the frequency versus number of fatalities (F-N) relationship representing societal risk is calculated, and the effect of population density averaging over the pipeline length.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
G. Cassetti ◽  
M. C. Bellina ◽  
E. Colombo

The core of the work is the investigation of the possible correlation between the thermodynamics and the hazards of a process. The objective is understanding the role of inefficiency in hazards consequences. To investigate such correlation, a case study from oil and gas sector is developed, where exergy analysis is used to study the thermodynamics of the process and a simplified quantitative risk assessment (QRA) is performed to evaluate the consequences of identified hazards. The thermo-economic approach is then used to correlate the two analyses. Through the analysis, the authors want to identify those components where hazardous consequences may be affected by inefficiency, aiming to reduce the risk of fatalities in processes by operating on the process itself or suggesting possible alternative strategies. The purpose of the paper is also to propose for further investigation on the correlation between inefficiency and process hazards.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Amir Farmahini Farahani ◽  
Kaveh Khalili-Damghani ◽  
Hosein Didehkhani ◽  
Amir Homayoun Sarfaraz ◽  
Mehdi Hajirezaie

Author(s):  
Wenxing Feng ◽  
Xiaoqiang Xiang ◽  
Guangming Jia ◽  
Lianshuang Dai ◽  
Yulei Gu ◽  
...  

The oil and gas pipeline companies in China are facing unprecedented opportunities and challenges because of China’s increasing demand for oil and gas energy that is attributed to rapid economic and social development. Limitation of land resource and the fast urbanization lead to a determinate result that many pipelines have to go through or be adjacent to highly populated areas such as cities or towns. The increasing Chinese government regulation, and public concerns about industrial safety and environmental protection push the pipeline companies to enhance the safety, health and environmental protection management. In recent years, PetroChina Pipeline Company (PPC) pays a lot of attention and effort to improve employees and public safety around the pipeline facilities. A comprehensive, integrated HSE management system is continuously improved and effectively implemented in PPC. PPC conducts hazard identification, risk assessment, risk control and mitigation, risk monitoring. For the oil and gas stations in highly populated area or with numerous employees, PPC carries out quantitative risk assessment (QRA) to evaluate and manage the population risk. To make the assessment, “Guidelines for quantitative risk assessments” (purple book) published by Committee for the Prevention of Disasters of Netherlands is used along with a software package. The basic principles, process, and methods of QRA technology are introduced in this article. The process is to identify the station hazards, determinate the failure scenarios of the facilities, estimate the possibilities of leakage failures, calculate the consequences of failures and damages to population, demonstrate the individual risk and social risk, and evaluate whether the risk is acceptable. The process may involve the mathematical modeling of fluid and gas spill, dispersion, fire and explosion. One QRA case in an oil pipeline station is described in this article to illustrate the application process and discuss several key issues in the assessment. Using QRA technique, about 20 stations have been evaluated in PPC. On the basis of the results, managers have taken prevention and mitigation plans to control the risk. QRAs in the pipeline station can provide a quantitative basis and valuable reference for the company’s decision-making and land use planning. Also, QRA can play a role to make a better relationship between the pipeline companies and the local regulator and public. Finally, this article delivers limitations of QRA in Chinese pipeline stations and discusses issues of the solutions.


2006 ◽  
Vol 6 (3) ◽  
pp. 471-483 ◽  
Author(s):  
Th. Plattner ◽  
T. Plapp ◽  
B. Hebel

Abstract. An urgent need to take perception into account for risk assessment has been pointed out by relevant literature, its impact in terms of risk-related behaviour by individuals is obvious. This study represents an effort to overcome the broadly discussed question of whether risk perception is quantifiable or not by proposing a still simple but applicable methodology. A novel approach is elaborated to obtain a more accurate and comprehensive quantification of risk in comparison to present formal risk evaluation practice. A consideration of relevant factors enables a explicit quantification of individual risk perception and evaluation. The model approach integrates the effective individual risk reff and a weighted mean of relevant perception affecting factors PAF. The relevant PAF cover voluntariness of risk-taking, individual reducibility of risk, knowledge and experience, endangerment, subjective damage rating and subjective recurrence frequency perception. The approach assigns an individual weight to each PAF to represent its impact magnitude. The quantification of these weights is target-group-dependent (e.g. experts, laypersons) and may be effected by psychometric methods. The novel approach is subject to a plausibility check using data from an expert-workshop. A first model application is conducted by means of data of an empirical risk perception study in Western Germany to deduce PAF and weight quantification as well as to confirm and evaluate model applicbility and flexibility. Main fields of application will be a quantification of risk perception by individual persons in a formal and technical way e.g. for the purpose of risk communication issues in illustrating differing perspectives of experts and non-experts. For decision making processes this model will have to be applied with caution, since it is by definition not designed to quantify risk acceptance or risk evaluation. The approach may well explain how risk perception differs, but not why it differs. The formal model generates only "snap shots" and considers neither the socio-cultural nor the historical context of risk perception, since it is a highly individualistic and non-contextual approach.


1993 ◽  
Vol 56 (12) ◽  
pp. 1043-1050 ◽  
Author(s):  
JOAN B. ROSE ◽  
MARK D. SOBSEY

Human pathogenic viruses have been detected from approved shellfish harvesting waters based on the fecal coliform indicator. Until recently it was difficult to assess viral contamination and the potential impact on public health. Risk assessment is a valuable tool which can be used to estimate adverse effects associated with microbial hazards. This report describes the use of quantitative risk assessment for evaluating potential human health impacts associated with exposure to viral contamination of shellfish. The four fundamental steps used in a formal risk assessment are described within and include i) Hazard identification, ii) Dose-response determination, iii) Exposure assessment, and iv) Risk characterization. Dose-response models developed from human feeding studies were used to evaluate the risk of infection from contaminated shellfish. Of 58 pooled samples, 19% were found to be positive for viruses. Using an echovirus-12 probability model, the individual risk was determined for consumption of 60 g of raw shellfish. Individual risks ranged from 2.2 × 10−4 to 3.5 × 10−2. These data suggest that individuals consuming raw shellfish from approved waters in the United States may have on the average a 1 in 100 chance of becoming infected with an enteric virus. Using the rotavirus model which represents a more infectious virus, the risk rose to 5 in 10. The potential for use of a risk assessment approach for developing priorities and strategies for control of disease is immense. Epidemiological data have demonstrated the significance of shellfish-associated viral disease and, although limited, appropriate virus occurrence data are available. Additional information on virus occurrence and exposure is needed, and then scientific risk assessment can be used to better assure the safety of seafood.


2008 ◽  
Vol 45 (9) ◽  
pp. 1250-1267 ◽  
Author(s):  
Mark J. Cassidy ◽  
Marco Uzielli ◽  
Suzanne Lacasse

Probabilistic risk assessments are increasingly being considered the most appropriate framework for engineers to systematically base decisions on hazard mitigation issues. This paper aims to show the advantages of a quantitative risk assessment by application to a historical case study. The generalized integrated risk assessment framework has been applied retrospectively to a submarine landslide that occurred in 1996 near the village of Finneidfjord in northern Norway. Over 1 million cubic metres of predominantly quick clay was displaced. Even though it was triggered underwater on the embankment of the Sørfjord, the retrogressive nature of the slide resulted in it encroaching 100–150 m inland. The triggering mechanism is believed to have been the placement of fill, from a nearby tunnelling project, on the foreshore of the embankment. This paper is a retrospective quantitative evaluation of the risk to the neighbouring houses, the persons in those houses, and the persons in open spaces caused by the placement of increasing levels of embankment fill. A probabilistic approach, making use of second-moment modelling and first-order second-moment approximation is adopted. It aims to demonstrate the advantages of this type of risk assessment in understanding complex and integrated hazards, particularly those in populated environments.


Sign in / Sign up

Export Citation Format

Share Document