Safety Risk Acceptance Criteria for Pipelines

Author(s):  
Maher Nessim ◽  
Shahani Kariyawasam

Abstract The lack of established acceptance criteria has been one of the key challenges to the application of quantitative risk assessment (QRA) techniques in the Canadian pipeline industry. While a wide range of such criteria have been developed and published, it remains difficult for most operators to commit to specific criteria because such criteria may not be acceptable to all stakeholders. Recognizing this limitation, the Canadian Standards Association formed a Risk Management Task Force (RMTF) under the Technical Committee for the Z662 Standard on the Oil and Gas Pipeline Systems to propose criteria for potential inclusion in its non-mandatory Annex on Risk Assessment. This paper describes the criteria that have been developed by the RMTF and provides the background information needed for users to understand and use them correctly. The discussion includes: a summary of the measures used to quantify the safety risk associated with an ignited product release; a summary of established international and Canadian criteria that have been considered; a description and interpretation of the ALARP (As Low As Reasonably Practicable) principle; and the rationale used by the RMTF to select specific individual risk and societal risk criteria for CSA Z662. The proposed criteria are also compared to the criteria underpinning other risk-based parts of the Z662 Standard, including Annexes C and O. Guidance is provided on the analysis assumptions, methods and parameters required to ensure that the risk calculations produce results that are consistent with the definition and intent of the criteria. Key issues addressed by the guidance include the definition of individual risk (i.e. location risk versus personal risk), the pipeline length over which the frequency versus number of fatalities (F-N) relationship representing societal risk is calculated, and the effect of population density averaging over the pipeline length.

2019 ◽  
Vol 59 (2) ◽  
pp. 549
Author(s):  
Colin Crowley ◽  
Dave Ashton

As technology advances and field development possibilities grow, the need for earlier guidance on the safety performance of concept designs is greater than ever. The SNC-Lavalin concept risk assessment (CRA) tool is a transparent and rapidly deployable model that is based on sound, industry-accepted quantitative risk assessment (QRA) principles. From the earliest stages of field development, when conceptualisation may be vague and data sparse, a wide range and variety of design options can still be assessed effectively and ranked on their safety performance. The CRA tool is proprietary software initially developed with BP and Shell. The model was first calibrated against 10 detailed QRAs, but is regularly benchmarked and updated with the most current failure rate data and has been used on nearly 50 projects globally. The database now incorporates established rule sets from hundreds of detailed QRAs performed, including floating liquefied natural gas and floating storage regasification units. This paper presents a CRA case study for a generic remote offshore field with a range of development options from conventional to minimal offshore facilities. The model calculates the associated risks for the options considered and is presented in terms of individual risk per annum, temporary refuge impairment frequency and potential loss of life. The results highlight the effects of each individual design feature on risk levels by comparison of similar options side by side, noting the main risk contributors and allowing investigation of the benefits of risk reduction measures. This enables identification of the best design features from each of the options and allows an optimised design to be carried forward.


2021 ◽  
Author(s):  
Luca Decarli ◽  
Anna Crivellari ◽  
Laura La Rosa ◽  
Enrico Zio ◽  
Francesco Di Maio ◽  
...  

Abstract For the design and operation of Oil and Gas (O&G) facilities, a Quantitative Risk Assessment (QRA) should be performed to quantify the risk of major accidents due to multiple hazards and sources at the plant level, thus allowing the effective identification and allocation of safety barriers. In this work, a novel approach for the multi-hazard and multi-source aggregation of risks is proposed, accounting for the uncertainties typically unexpressed in a conventional QRA (both on the frequency and severity of the accidental scenarios). The multi-hazard risk assessment framework proposed is applied to assess the Location-Specific Individual Risk (LSIR) for a representative Upstream O&G plant (case study), using a model based on multistate Bayesian Networks (BNs) for different functional units, each one undergoing an initiating event of Loss Of Primary Containment (LOPC). Estimates of frequency and severity for each possible accident scenario are aggregated to eventually calculate the overall LSIR. Moreover, LSIR's confidence intervals are provided to describe the uncertainty associated to the estimates, and the frequency and severity contributions to risk are derived for targeted prioritization of the safety barriers in view of the risk reduction.


Author(s):  
Patrick L. Wickenhauser ◽  
David K. Playdon

The quantitative risk assessment tool was used to calculate the failure rates, failure consequences and risk levels along the pipeline. Safety risk was characterized by the individual risk ratio, which was defined as the maximum individual risk associated with a given segment divided by the tolerable individual risk. Tolerable individual risk values were defined as a function of population density following the approach developed by MIACC and the UK HSE. Financial risk was expressed in dollars per km-year and included a dollar equivalent for public perception. The recommended maintenance plan was defined as the minimum cost option that achieved a tolerable safety risk. The first step in developing the plan was to identify all segments that do not meet tolerable risk criteria (i.e., segments with an individual risk ratio greater than 1). For each of these segments a number of potential maintenance scenarios that address the dominant failure threats were selected. A cost optimization analysis was then carried out in which the total expected cost associated with each maintenance option was calculated as the sum of implementing the option plus the corresponding financial risk component, amortized over the inspection interval. This analysis was used to identify the minimum cost alternative that meets the individual risk constraint. Outcomes of the analysis included the best maintenance option (e.g., inline inspection, hydrostatic test) and the optimal time interval for segment re-evaluation.


Author(s):  
Wenxing Feng ◽  
Xiaoqiang Xiang ◽  
Guangming Jia ◽  
Lianshuang Dai ◽  
Yulei Gu ◽  
...  

The oil and gas pipeline companies in China are facing unprecedented opportunities and challenges because of China’s increasing demand for oil and gas energy that is attributed to rapid economic and social development. Limitation of land resource and the fast urbanization lead to a determinate result that many pipelines have to go through or be adjacent to highly populated areas such as cities or towns. The increasing Chinese government regulation, and public concerns about industrial safety and environmental protection push the pipeline companies to enhance the safety, health and environmental protection management. In recent years, PetroChina Pipeline Company (PPC) pays a lot of attention and effort to improve employees and public safety around the pipeline facilities. A comprehensive, integrated HSE management system is continuously improved and effectively implemented in PPC. PPC conducts hazard identification, risk assessment, risk control and mitigation, risk monitoring. For the oil and gas stations in highly populated area or with numerous employees, PPC carries out quantitative risk assessment (QRA) to evaluate and manage the population risk. To make the assessment, “Guidelines for quantitative risk assessments” (purple book) published by Committee for the Prevention of Disasters of Netherlands is used along with a software package. The basic principles, process, and methods of QRA technology are introduced in this article. The process is to identify the station hazards, determinate the failure scenarios of the facilities, estimate the possibilities of leakage failures, calculate the consequences of failures and damages to population, demonstrate the individual risk and social risk, and evaluate whether the risk is acceptable. The process may involve the mathematical modeling of fluid and gas spill, dispersion, fire and explosion. One QRA case in an oil pipeline station is described in this article to illustrate the application process and discuss several key issues in the assessment. Using QRA technique, about 20 stations have been evaluated in PPC. On the basis of the results, managers have taken prevention and mitigation plans to control the risk. QRAs in the pipeline station can provide a quantitative basis and valuable reference for the company’s decision-making and land use planning. Also, QRA can play a role to make a better relationship between the pipeline companies and the local regulator and public. Finally, this article delivers limitations of QRA in Chinese pipeline stations and discusses issues of the solutions.


1993 ◽  
Vol 56 (12) ◽  
pp. 1043-1050 ◽  
Author(s):  
JOAN B. ROSE ◽  
MARK D. SOBSEY

Human pathogenic viruses have been detected from approved shellfish harvesting waters based on the fecal coliform indicator. Until recently it was difficult to assess viral contamination and the potential impact on public health. Risk assessment is a valuable tool which can be used to estimate adverse effects associated with microbial hazards. This report describes the use of quantitative risk assessment for evaluating potential human health impacts associated with exposure to viral contamination of shellfish. The four fundamental steps used in a formal risk assessment are described within and include i) Hazard identification, ii) Dose-response determination, iii) Exposure assessment, and iv) Risk characterization. Dose-response models developed from human feeding studies were used to evaluate the risk of infection from contaminated shellfish. Of 58 pooled samples, 19% were found to be positive for viruses. Using an echovirus-12 probability model, the individual risk was determined for consumption of 60 g of raw shellfish. Individual risks ranged from 2.2 × 10−4 to 3.5 × 10−2. These data suggest that individuals consuming raw shellfish from approved waters in the United States may have on the average a 1 in 100 chance of becoming infected with an enteric virus. Using the rotavirus model which represents a more infectious virus, the risk rose to 5 in 10. The potential for use of a risk assessment approach for developing priorities and strategies for control of disease is immense. Epidemiological data have demonstrated the significance of shellfish-associated viral disease and, although limited, appropriate virus occurrence data are available. Additional information on virus occurrence and exposure is needed, and then scientific risk assessment can be used to better assure the safety of seafood.


Author(s):  
David Mangold ◽  
W. Kent Muhlbauer ◽  
Jim Ponder ◽  
Tony Alfano

Risk management of pipelines is a complex challenge due to the dynamic environment of the real world coupled with a wide range of system types installed over many decades. Various methods of risk assessment are currently being used in industry, many of which utilize relative scoring. These assessments are often not designed for the new integrity management program (IMP) requirements and are under direct challenge by regulators. SemGroup had historically used relative risk assessment methodologies to help support risk management decision-making. While the formality offered by these early methods provided benefits, it was recognized that, in order to more effectively manage risk and better meet the United States IMP objectives, a more effective risk assessment would be needed. A rapid and inexpensive migration into a better risk assessment platform was sought. The platform needed to be applicable not only to pipeline miles, but also to station facilities and all related components. The risk results had to be readily understandable and scalable, capturing risks from ‘trap to trap’ in addition to risks accompanying each segment. The solution appeared in the form a quantitative risk assessment that was ‘physics based’ rather than the classical statistics based QRA. This paper will outline the steps involved in this transition process and show how quantitative risk assessment may be efficiently implemented to better guide integrity decision-making, illustrated with a case study from SemGroup.


Author(s):  
Dongliang Lu ◽  
Alex Tomic ◽  
Shahani Kariyawasam

Abstract Risk assessment is the process of risk analysis and evaluation. It is a required component of pipeline integrity management programs (IMP) and is generally the first step in most IMPs. For the risk assessment of natural gas pipelines, the primary concern is the safety of population near the pipeline right of way (ROW). TC Energy’s SWRA uses a quantitative risk assessment model that considers the effect of the thermal radiation due to ignited pipeline rupture and evaluate the consequence on the surrounding population. The overall risk is then evaluated using two specific risk criteria: societal risk and individual risk, with the societal risk measuring the overall level of risk to a community or a group of people and the individual risk measuring the level of risk to specific individuals who are present within the pipeline hazard zone. Natural gas pipeline systems often extend hundreds or even thousands of miles. As such, societal risk criteria for pipelines are typically defined based on a given length of pipeline segment, usually in 1 km or 1 mile (1.6 km). To assess the societal risk of actual pipelines, different approaches are taken on how the risk along the length of a pipeline should be aggregated and compared to the criteria. For example, the PD8010-3 standard in the UK recommends the societal risk of a pipeline through a community to be aggregated and then normalized to the unit length to be compared with criteria; whereas the Dutch regulation requires societal risk at the worst location to be used. In the current SWRA, the societal risk along the length of a pipeline going through development areas or communities is aggregated following the recommendation of the UK PD8010-3, where the risk is aggregated and normalized to the pipeline length. Due to the vast scale of the pipeline system, it is impractical to manually review all development along the pipelines for conducting societal risk assessment on a system wide basis. As such, extent of communities and development areas is determined by a computer program using a simple set of rules. It was found to have led to unsatisfying granularity in the societal risk assessment in certain situations, with some interaction lengths being too long and thus failing to identify the more critical section within the interaction length, and certain development lengths being too short and thus not very meaningful from a societal risk perspective. To overcome issues with the current societal risk assessment method in SWRA, an alternative method largely following the direction of the Dutch approach is introduced in this paper. In this alternative approach, the societal risk is evaluated continuously along a pipeline with a predefined a sliding length, and thus variations in the societal risk levels along the entire length of a pipeline, including the locations with the highest societal risk levels, can be identified. Implantation details and computational efficiency were discussed. The results from the alternative method were compared to that from the current method. The sensitivity of the sliding length method to the predefined sliding length was also investigated. The study showed that this alternative method improves the accuracy and granularity of the societal risk assessment in the SWRA, and, although it is relatively computational commanding, with an efficient implementation, is still practical even for very large gas transmission systems.


2013 ◽  
Vol 845 ◽  
pp. 647-651
Author(s):  
Mohd Amin bin Abd Majid ◽  
Rano Khan Wassan ◽  
Ainul Akmar Mokhtar

In petrochemical, power generation, oil and gas industries and in variety of other sectors rotating equipments are in use to fulfill production requirements. Failure of rotating equipment, especially in such industries can result to risk related issues. A well implemented rotating equipment risk assessment strategy is most needed to achieve desired plant availability and efficiency. In this research semi-quantitative risk assessment approach is proposed to evaluate the risk of rotating equipment and categorize their associated failure risks. Borda ranking is adopted to evaluate the risk in order to minimize risk ties which exist in risk matrix. Compressor is taken as case study to show the applicability of the proposed method for rotating equipment. It was observed that risks of selected failure modes of gas turbine compressor fall in the categories of serious and medium levels based on risk matrix. Rotor bend distortion, blade failure or inlet guide vane failures needed more attention for treatment based on Borda ranking.


2020 ◽  
Vol 57 (3) ◽  
pp. 337-353 ◽  
Author(s):  
Renato Macciotta ◽  
Chris Gräpel ◽  
Tim Keegan ◽  
Jason Duxbury ◽  
Roger Skirrow

We present a quantitative risk assessment (QRA) to guide decision-making for selection of rock fall protection strategies. The analysis corresponds to a section of highway near Canmore, Alberta, Canada; where rock falls are common. Environmental concerns, tourism, and economic activities overlap the project area, which increased the complexity of the decision-making process. QRA was adopted to improve highway user safety and minimize effects on natural, social, and economic environments. Uncertainty was associated with hazard and consequence quantification, and the study elicited plausible ranges of input variables for risk calculation. Expected and range in risk were calculated for current conditions and after mitigation. Individual risk to highway users was found to be low, following the limited exposure of any particular individual. Current total risk was calculated at 2.9 × 10−4probability of fatality and a plausible range between 2.0 × 10−5and 5.5 × 10−3. The slope protection configuration selected had a residual total risk between 9.0 × 10−4and 2.9 × 10−6, and a best estimate of 4.5 × 10−5. The risk levels were evaluated against criteria previously used in Canada and were considered an appropriate balance between project costs, public safety, environmental concerns, tourism, and economic activities after mitigation.


Sign in / Sign up

Export Citation Format

Share Document