Successful Implementation of Managed Pressure Drilling and Managed Pressure Cementing Techniques in Fractured Carbonate Formation Prone to Total Lost Circulation in Far North Region

2021 ◽  
Author(s):  
Zhanna Kazakbayeva ◽  
Almas Kaidarov ◽  
Andrey Magda ◽  
Fuad Aliyev ◽  
Harshad Patil ◽  
...  

Abstract Drilling reservoir section in the oilfield located in Far North region is challenged with high risks of mud losses ranging from relatively minor losses to severe lost circulation. Numerous attempts to cure losses with traditional methods have been inefficient and unsuccessful. This paper describes implementation of Managed Pressure Drilling (MPD) and Managed Pressure Cementing (MPC) techniques to drill 6-1/8″ hole section, run and cement 5″ liner managing bottomhole pressure and overcoming wellbore construction challenges. Application of MPD technique enabled drilling 6-1/8″ hole section with statically underbalanced mud holding constant bottom hole pressure both in static and dynamic conditions. The drilling window uncertainty made it difficult to plan for the correct mud weight (MW) to drill the section. The MW and MPD design were chosen after risk assessment and based on the decisions from drilling operator. Coriolis flowmeter proved to be essential in deciphering minor losses and allowed quick response to changing conditions. Upon reaching target depth, the well was displaced to heavier mud in MPD mode prior to open hole logging and MPC. MPD techniques allowed the client to drill thru fractured formation without losses or gains in just a couple of days as compared to the months of drilling time the wells usually took to mitigate wellbore problems, such as total losses, kicks, differential sticking, etc. This job helped the client to save time and reduce well construction costs while optimizing drilling performance. Conventional cementing was not feasible in previous wells because of risks of losses, which were eliminated with MPC technique: bottomhole pressure (BHP) was kept below expected loss zones that provided necessary height of cement and a good barrier required to complete and produce the well. Successful zonal isolation applying MPC technique was confirmed by cement bond log and casing integrity test. Throughout the project, real-time data transmission was available to the client and engineering support team in town. This provided pro-active monitoring and real-time process optimization in response to wellbore changes. MPD techniques helped the client to drill the well in record time with the lowest possible mud weight consequently reducing mud requirements. The MPD system allowed obtaining pertinent reservoir data, such as pore pressure and fracture pressure gradients in uncertain geological conditions.

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Robello Samuel ◽  
Randy Lovorn

Managed pressure drilling (MPD) was developed as a group of technologies to more precisely control the annular pressure profile for which accuracy of the estimation of the bottomhole pressure is important. Particularly, under severe wave heaves in deepwater environments, the estimation based on static state pipe movement models can result in underestimation/overestimation of bottomhole pressures. The purpose of this study is to investigate the dynamic axial response of the drillstring with friction to applied heaving velocity, with particular interest to the effect at the bottomhole pressure. The paper presents an efficient and accurate method for solving the dynamic axial drillstring with friction and it allows it to be applied to heave velocity at the surface. The model that couples the pipe motion solves the full balance of mass and balance of momentum for pipe and annulus flow, considering the compressibility of the fluids, the elasticity of the system, and the dynamic motions of pipes and fluids. Also considered are surge pressures related to fluid column length below the moving pipe, compressibility of the formation, and axial elasticity of the moving string. Fluid properties are adjusted to reflect the effects of pressure and temperature on the fluids. The modeling takes into account the pipe elasticity under different combinations of heave and pipe velocities. Furthermore, the real-time torque and drag models are calibrated to actual hole conditions in real-time using survey, temperature, pressure, and downhole tool data to calculate friction factors in a wellbore. It has been observed that different conditions exist, some resulting in velocity reversal; thus causing surge or swab pressures. It has also been observed that heave amplitude has significant influence on bottomhole pressure. The different conditions observed for periodic or time function of displacements include (1) surface pipe velocity attributed to wave heave is in phase with the bottom movement of the string; (2) surface velocity of the pipe is out of phase with the bottom velocity of the pipe; (3) wave velocity and surface pipe velocity can be out of sync, and the bottom pipe velocity can be in phase with the surface velocity; and (4) wave velocity and surface pipe velocity can be out of sync, and the bottom pipe velocity can be out of phase with the surface velocity. The results of these calculations can be coupled to a real-time hydraulics model to determine a setpoint pressure for the MPD choke system. (SPE 173|005)


2021 ◽  
Author(s):  
Mohammed Omer ◽  
Tosin Odunlami ◽  
Carlos Iturrious

Abstract With rising energy demand, operators in the Middle East are now focusing on developing unconventional resources. To optimize hydraulic fracture stimulation, most of these deep gas wells are required to be drilled laterally and in the direction of the minimum horizontal stress. However, this poses an increased risk of stuck pipe due to hole instability, differential sticking and skin damage due to high overbalance pressures, which makes drilling these wells challenging and costly. Another major challenge in the Middle East is lost circulation due to natural fractures in carbonate reservoirs. Lost circulation currently accounts for loss of approximately $850-900 million USD per year globally across the industry (Marinescu 2014). This paper presents a case study where a holistic approach; combining geomechanics and drilling technologies were employed to address the drilling challenges specific to unconventional and naturally fractured reservoirs. Ultimately, this approach helped the client to mitigate stuck pipe issues, while proposing a physics/engineering-basedmethodology to reduce losses by sealing fractures, hence providing a roadmap to optimized drilling and mitigation of hazards with associated Non-Productive Time (NPT). The paper demonstrates a holistic approach, combining wellbore stability analysis, managed pressure drilling (MPD) and proposes a novel physics/engineering-based methodology for addressing lost circulation challenges. A 1-D wellbore stability model is initially developed to determine the safe operating downhole pressure limits and to effectively assess the drilling risks associated with the planned wellbore orientation. By accurately determining the required bottomhole pressure to prevent wellbore stability problems, managed pressure drilling technology can be implemented to provide improved drilling hazard mitigation by enabling reduced overbalance pressures, constant bottomhole pressure, and faster reaction time by instantaneously adjusting downhole pressures. A bi-particulate bio-degradable system is used as a lost circulation material (LCM). The bigger size cylindrical particles flowing at a pre-defined rate will form a bridge or a plug across the fracture aperture, providing mechanical stability and the smaller spherical particles will seal the gaps in the bridge there by providing an effective sealing of the fracture opening. From experience, implementing these methodologies and technologies in isolation has not provided satisfactory results. This indicates that a partnership which leverages the strengths of the individual disciplines from the early planning stages is necessary to effectively address the drilling challenges posed by unconventional and naturally fractured reservoirs. For the case study highlighted in this paper, the well was drilled to TD in a timely manner, while maintaining the integrity of the hole, hence confirming the viability of this approach. In addition, the physics and engineering design workflow for bi-particulate bio-degradable LCM demonstrates how it can be effectively deployed to mitigate lost circulation without skin damage to the formation


2021 ◽  
Author(s):  
Mahmoud El-Husseiny ◽  
Taher El-Fakharany ◽  
Samir Khaled

Abstract Managed pressure drilling (MPD) has a reputation for enhancing drilling performance. However, in this study, we use it as a technology for making undrillable wells drillable. In the deepwater of the Mediterranean of Egypt, a gas field has been producing for few years. Water broke through in one well, thus, we must drill a new well to compensate for the reduction in production. Years of production led to pressure depletion, which makes it difficult to drill this well conventionally. In this study, we will discuss the combination of MPD and wellbore strengthening (WS). In addition, we will discuss the challenges we met while drilling and how we tackled them, and the best practices and recommendations for similar applications. The 12¼" × 13½" hole section passed depleted sands, followed by a pressure ramp. First, we drilled the depleted sands and confirmed the pressure ramp top. To strengthen the sand, we spotted a stress-cage pill of 645 bbls with a total concentration of 29 ppb. In addition, we conducted a formation integrity test (FIT), but its value was lower than the required value to drill to the section target depth (TD). Then, we switched to MPD and increased the mud weight. MPD in annular pressure control mode (AP) enabled us to walk the edge as near as possible to the impossible. Drilling this section was challenging due to the narrow mud weight window (MWW). We faced kick-loss cycles, where we had high-gas levels (from 20% to 55%) while drilling with a loss rate from 60 to 255 bph, at the same time. The 8½″ × 9½″ hole section will cover a depleted reservoir. Therefore, we decided to use the MPD to drill this section. To widen the MWW, we decided to stress-caging the hole, as we drill. We loaded the active-mud system with stress-cage materials totaling 39 ppb. We drilled the hole section while keeping the bottom hole pressure (BHP) at 14.6 ppg. We drilled using MPD by maintaining 525-psi surface back pressure (SBP). We used the SBP mode (semi-auto mode) to add connections, resulting in minor background gases and minor losses. This study discusses the application of a novel combination of MPD and WS. It emphasizes how MPD can integrate with other technologies to offer a practical solution to future drilling challenges in deepwater-drilling environments.


2021 ◽  
Author(s):  
Denis Lobastov ◽  
Svetlana Nafikova ◽  
Ilshat Akhmetzianov ◽  
Shamil Zaripov ◽  
Dmitry Krivolapov

Abstract The collaborative approach used for cementing the production liner in an onshore development well in Russia is presented. The reservoir has a narrow window between pore and fracture pressures, which has previously caused formation instability and severe lost circulation issues during well construction, compromising zonal isolation objectives. Total loss of fluids experienced while cementing the 114.3 mm production liner in the first appraisal well in the field led to revising the cementing strategy. Collaboration among various parts of the drilling department and the opportunity to define a new approach resulted in a decision to introduce managed pressure drilling (MPD) to address the challenges associated with a narrow pressure window and uncertainty in pore pressure while drilling and cementing. This enabled implementing the optimal mud weight and adjusting equivalent circulating density (ECD) during cementing with minimum overbalance. Reducing the mud weight from 1.20 SG to 1.05 SG eliminated losses after running the liner and while cementing it. As a result, pre-job circulation rates and pumping rates during cementing could be increased, improving mud removal efficiency and achieving top of cement at the required depth. The constant-bottomhole-pressure mode of MPD was used to maintain the same ECD during displacement of the well to a lighter fluid and during cementing, avoiding well influx during pumpoff events by compensating for the annular friction pressure loss with surface backpressure. This first onshore managed pressure cementing operation executed within the same field in Russia (later named as field A) was completed flawlessly, with no safety or quality issues, zero nonproductive time, and achievement of the required zonal isolation across the challenging production section. The collaborative approach used was a novel strategy, with the mud weight program strategically adjusted before and during the cementing operation to achieve zonal isolation objectives.


2021 ◽  
Vol 11 (2) ◽  
pp. 767
Author(s):  
Nediljka Gaurina-Međimurec ◽  
Borivoje Pašić ◽  
Petar Mijić ◽  
Igor Medved

For years, drilling engineers have been faced with the challenge of drilling wells through naturally fractured reservoirs that are present around the world. During drilling, the pressure at the bottomhole of a well is frequently intentionally higher than formation pressure, which can result in the loss of mud in surrounding rocks. During well cementing, the bottomhole pressure is even higher than it is during drilling, because the cement slurry density is higher than the density of the mud. Therefore, if natural or induced fractures in the surrounding rocks are not plugged during drilling, the cement slurry can be lost to them, reducing their permeability which is undesirable in the case of a pay zone. To prevent the loss of circulation and the related consequences, it is necessary to apply good drilling and cementing practices and to use adequate methods and carefully selected materials for plugging the loss zones. The aim of this article is to give an overview of the preventive and corrective methods that can be applied in drilling and cementing through fractured zones as well as improvements in drilling and cementing technology to avoid lost circulation issues (e.g., aerated drilling fluid, casing while drilling, managed pressure drilling, expandable tubulars, lightweight cement slurries, etc.).


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 627
Author(s):  
David Marquez-Viloria ◽  
Luis Castano-Londono ◽  
Neil Guerrero-Gonzalez

A methodology for scalable and concurrent real-time implementation of highly recurrent algorithms is presented and experimentally validated using the AWS-FPGA. This paper presents a parallel implementation of a KNN algorithm focused on the m-QAM demodulators using high-level synthesis for fast prototyping, parameterization, and scalability of the design. The proposed design shows the successful implementation of the KNN algorithm for interchannel interference mitigation in a 3 × 16 Gbaud 16-QAM Nyquist WDM system. Additionally, we present a modified version of the KNN algorithm in which comparisons among data symbols are reduced by identifying the closest neighbor using the rule of the 8-connected clusters used for image processing. Real-time implementation of the modified KNN on a Xilinx Virtex UltraScale+ VU9P AWS-FPGA board was compared with the results obtained in previous work using the same data from the same experimental setup but offline DSP using Matlab. The results show that the difference is negligible below FEC limit. Additionally, the modified KNN shows a reduction of operations from 43 percent to 75 percent, depending on the symbol’s position in the constellation, achieving a reduction 47.25% reduction in total computational time for 100 K input symbols processed on 20 parallel cores compared to the KNN algorithm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jennifer Zehner ◽  
Anja Røyne ◽  
Pawel Sikorski

AbstractBiocementation is commonly based on microbial-induced carbonate precipitation (MICP) or enzyme-induced carbonate precipitation (EICP), where biomineralization of $$\text {CaCO}_{3}$$ CaCO 3 in a granular medium is used to produce a sustainable, consolidated porous material. The successful implementation of biocementation in large-scale applications requires detailed knowledge about the micro-scale processes of $$\text {CaCO}_{3}$$ CaCO 3 precipitation and grain consolidation. For this purpose, we present a microscopy sample cell that enables real time and in situ observations of the precipitation of $$\text {CaCO}_{3}$$ CaCO 3 in the presence of sand grains and calcite seeds. In this study, the sample cell is used in combination with confocal laser scanning microscopy (CLSM) which allows the monitoring in situ of local pH during the reaction. The sample cell can be disassembled at the end of the experiment, so that the precipitated crystals can be characterized with Raman microspectroscopy and scanning electron microscopy (SEM) without disturbing the sample. The combination of the real time and in situ monitoring of the precipitation process with the possibility to characterize the precipitated crystals without further sample processing, offers a powerful tool for knowledge-based improvements of biocementation.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Yanfang Wang ◽  
Saeed Salehi

Real-time drilling optimization improves drilling performance by providing early warnings in operation Mud hydraulics is a key aspect of drilling that can be optimized by access to real-time data. Different from the investigated references, reliable prediction of pump pressure provides an early warning of circulation problems, washout, lost circulation, underground blowout, and kicks. This will help the driller to make necessary corrections to mitigate potential problems. In this study, an artificial neural network (ANN) model to predict hydraulics was implemented through the fitting tool of matlab. Following the determination of the optimum model, the sensitivity analysis of input parameters on the created model was investigated by using forward regression method. Next, the remaining data from the selected well samples was applied for simulation to verify the quality of the developed model. The novelty is this paper is validation of computer models with actual field data collected from an operator in LA. The simulation result was promising as compared with collected field data. This model can accurately predict pump pressure versus depth in analogous formations. The result of this work shows the potential of the approach developed in this work based on NN models for predicting real-time drilling hydraulics.


Sign in / Sign up

Export Citation Format

Share Document