Generation of a Complete Profile for Porosity Log While Drilling Complex Lithology by Employing the Artificial Intelligence

2021 ◽  
Author(s):  
Ahmed Al-Sabaa ◽  
Hany Gamal ◽  
Salaheldin Elkatatny

Abstract The formation porosity of drilled rock is an important parameter that determines the formation storage capacity. The common industrial technique for rock porosity acquisition is through the downhole logging tool. Usually logging while drilling, or wireline porosity logging provides a complete porosity log for the section of interest, however, the operational constraints for the logging tool might preclude the logging job, in addition to the job cost. The objective of this study is to provide an intelligent prediction model to predict the porosity from the drilling parameters. Artificial neural network (ANN) is a tool of artificial intelligence (AI) and it was employed in this study to build the porosity prediction model based on the drilling parameters as the weight on bit (WOB), drill string rotating-speed (RS), drilling torque (T), stand-pipe pressure (SPP), mud pumping rate (Q). The novel contribution of this study is to provide a rock porosity model for complex lithology formations using drilling parameters in real-time. The model was built using 2,700 data points from well (A) with 74:26 training to testing ratio. Many sensitivity analyses were performed to optimize the ANN model. The model was validated using unseen data set (1,000 data points) of Well (B), which is located in the same field and drilled across the same complex lithology. The results showed the high performance for the model either for training and testing or validation processes. The overall accuracy for the model was determined in terms of correlation coefficient (R) and average absolute percentage error (AAPE). Overall, R was higher than 0.91 and AAPE was less than 6.1 % for the model building and validation. Predicting the rock porosity while drilling in real-time will save the logging cost, and besides, will provide a guide for the formation storage capacity and interpretation analysis.

2021 ◽  
pp. 1-21
Author(s):  
Hany Gamal ◽  
Ahmed Alsaihati ◽  
Salaheldin Elkatatny ◽  
Saleh Haidary ◽  
Abdulazeez Abdulraheem

Abstract The rock unconfined compressive strength (UCS) is one of the key parameters for geomechanical and reservoir modeling in the petroleum industry. Obtaining the UCS by conventional methods such as experimental work or empirical correlation from logging data are time consuming and highly cost. To overcome these drawbacks, this paper utilized the help of artificial intelligence (AI) to predict (in a real-time) the rock strength from the drilling parameters using two AI tools. Random forest (RF) based on principal component analysis (PCA), and functional network (FN) techniques were employed to build two UCS prediction models based on the drilling data such as weight on bit (WOB), drill string rotating-speed (RS), drilling torque (T), stand-pipe pressure (SPP), mud pumping rate (Q), and the rate of penetration (ROP). The models were built using 2,333 data points from well (A) with 70:30 training to testing ratio. The models were validated using unseen data set (1,300 data points) of Well (B) which is located in the same field and drilled across the same complex lithology. The results of the PCA-based RF model outperformed the FN in terms of correlation coefficient (R) and average absolute percentage error (AAPE). The overall accuracy for PCA-based RF was R of 0.99 and AAPE of 4.3 %, and for FN yielded R of 0.97 and AAPE of 8.5%. The validation results showed that R was 0.99 for RF and 0.96 for FN, while the AAPE was 4 and 7.9 % for RF and FN models, respectively. The developed PCA-based RF and FN models provide an accurate UCS estimation in real-time from the drilling data, saving time and cost and enhancing the well stability by generating UCS log from the rig drilling data.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3506 ◽  
Author(s):  
Salaheldin Elkatatny

Rate of penetration (ROP) is defined as the amount of removed rock per unit area per unit time. It is affected by several factors which are inseparable. Current established models for determining the ROP include the basic mathematical and physics equations, as well as the use of empirical correlations. Given the complexity of the drilling process, the use of artificial intelligence (AI) has been a game changer because most of the unknown parameters can now be accounted for entirely at the modeling process. The objective of this paper is to evaluate the ability of the optimized adaptive neuro-fuzzy inference system (ANFIS), functional neural networks (FN), random forests (RF), and support vector machine (SVM) models to predict the ROP in real time from the drilling parameters in the S-shape well profile, for the first time, based on the drilling parameters of weight on bit (WOB), drillstring rotation (DSR), torque (T), pumping rate (GPM), and standpipe pressure (SPP). Data from two wells were used for training and testing (Well A and Well B with 4012 and 1717 data points, respectively), and one well for validation (Well C) with 2500 data points. Well A and Well B data were combined in the training-testing phase and were randomly divided into a 70:30 ratio for training/testing. The results showed that the ANFIS, FN, and RF models could effectively predict the ROP from the drilling parameters in the S-shape well profile, while the accuracy of the SVM model was very low. The ANFIS, FN, and RF models predicted the ROP for the training data with average absolute percentage errors (AAPEs) of 9.50%, 13.44%, and 3.25%, respectively. For the testing data, the ANFIS, FN, and RF models predicted the ROP with AAPEs of 9.57%, 11.20%, and 8.37%, respectively. The ANFIS, FN, and RF models overperformed the available empirical correlations for ROP prediction. The ANFIS model estimated the ROP for the validation data with an AAPE of 9.06%, whereas the FN model predicted the ROP with an AAPE of 10.48%, and the RF model predicted the ROP with an AAPE of 10.43%. The SVM model predicted the ROP for the validation data with a very high AAPE of 30.05% and all empirical correlations predicted the ROP with AAPEs greater than 25%.


2021 ◽  
Author(s):  
Temirlan Zhekenov ◽  
Artem Nechaev ◽  
Kamilla Chettykbayeva ◽  
Alexey Zinovyev ◽  
German Sardarov ◽  
...  

SUMMARY Researchers base their analysis on basic drilling parameters obtained during mud logging and demonstrate impressive results. However, due to limitations imposed by data quality often present during drilling, those solutions often tend to lose their stability and high levels of predictivity. In this work, the concept of hybrid modeling was introduced which allows to integrate the analytical correlations with algorithms of machine learning for obtaining stable solutions consistent from one data set to another.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Abdulmalek Ahmed ◽  
Salaheldin Elkatatny ◽  
Abdulwahab Ali ◽  
Mahmoud Abughaban ◽  
Abdulazeez Abdulraheem

Drilling a high-pressure, high-temperature (HPHT) well involves many difficulties and challenges. One of the greatest difficulties is the loss of circulation. Almost 40% of the drilling cost is attributed to the drilling fluid, so the loss of the fluid considerably increases the total drilling cost. There are several approaches to avoid loss of return; one of these approaches is preventing the occurrence of the losses by identifying the lost circulation zones. Most of these approaches are difficult to apply due to some constraints in the field. The purpose of this work is to apply three artificial intelligence (AI) techniques, namely, functional networks (FN), artificial neural networks (ANN), and fuzzy logic (FL), to identify the lost circulation zones. Real-time surface drilling parameters of three wells were obtained using real-time drilling sensors. Well A was utilized for training and testing the three developed AI models, whereas Well B and Well C were utilized to validate them. High accuracy was achieved by the three AI models based on the root mean square error (RMSE), confusion matrix, and correlation coefficient (R). All the AI models identified the lost circulation zones in Well A with high accuracy where the R is more than 0.98 and RMSE is less than 0.09. ANN is the most accurate model with R=0.99 and RMSE=0.05. An ANN was able to predict the lost circulation zones in the unseen Well B and Well C with R=0.946 and RMSE=0.165 and R=0.952 and RMSE=0.155, respectively.


2020 ◽  
Vol 1 (1) ◽  
pp. 35-42
Author(s):  
Péter Ekler ◽  
Dániel Pásztor

Összefoglalás. A mesterséges intelligencia az elmúlt években hatalmas fejlődésen ment keresztül, melynek köszönhetően ma már rengeteg különböző szakterületen megtalálható valamilyen formában, rengeteg kutatás szerves részévé vált. Ez leginkább az egyre inkább fejlődő tanulóalgoritmusoknak, illetve a Big Data környezetnek köszönhető, mely óriási mennyiségű tanítóadatot képes szolgáltatni. A cikk célja, hogy összefoglalja a technológia jelenlegi állapotát. Ismertetésre kerül a mesterséges intelligencia történelme, az alkalmazási területek egy nagyobb része, melyek központi eleme a mesterséges intelligencia. Ezek mellett rámutat a mesterséges intelligencia különböző biztonsági réseire, illetve a kiberbiztonság területén való felhasználhatóságra. A cikk a jelenlegi mesterséges intelligencia alkalmazások egy szeletét mutatja be, melyek jól illusztrálják a széles felhasználási területet. Summary. In the past years artificial intelligence has seen several improvements, which drove its usage to grow in various different areas and became the focus of many researches. This can be attributed to improvements made in the learning algorithms and Big Data techniques, which can provide tremendous amount of training. The goal of this paper is to summarize the current state of artificial intelligence. We present its history, introduce the terminology used, and show technological areas using artificial intelligence as a core part of their applications. The paper also introduces the security concerns related to artificial intelligence solutions but also highlights how the technology can be used to enhance security in different applications. Finally, we present future opportunities and possible improvements. The paper shows some general artificial intelligence applications that demonstrate the wide range usage of the technology. Many applications are built around artificial intelligence technologies and there are many services that a developer can use to achieve intelligent behavior. The foundation of different approaches is a well-designed learning algorithm, while the key to every learning algorithm is the quality of the data set that is used during the learning phase. There are applications that focus on image processing like face detection or other gesture detection to identify a person. Other solutions compare signatures while others are for object or plate number detection (for example the automatic parking system of an office building). Artificial intelligence and accurate data handling can be also used for anomaly detection in a real time system. For example, there are ongoing researches for anomaly detection at the ZalaZone autonomous car test field based on the collected sensor data. There are also more general applications like user profiling and automatic content recommendation by using behavior analysis techniques. However, the artificial intelligence technology also has security risks needed to be eliminated before applying an application publicly. One concern is the generation of fake contents. These must be detected with other algorithms that focus on small but noticeable differences. It is also essential to protect the data which is used by the learning algorithm and protect the logic flow of the solution. Network security can help to protect these applications. Artificial intelligence can also help strengthen the security of a solution as it is able to detect network anomalies and signs of a security issue. Therefore, the technology is widely used in IT security to prevent different type of attacks. As different BigData technologies, computational power, and storage capacity increase over time, there is space for improved artificial intelligence solution that can learn from large and real time data sets. The advancements in sensors can also help to give more precise data for different solutions. Finally, advanced natural language processing can help with communication between humans and computer based solutions.


2020 ◽  
Author(s):  
Chin-Chuan Hsu ◽  
Yuan Kao ◽  
Chien-Chin Hsu ◽  
Chia-Jung Chen ◽  
Shu-Lien Hsu ◽  
...  

Abstract Background Hyperglycemic crises are associated with high morbidity and mortality. Previous studies proposed methods for predicting adverse outcome in hyperglycemic crises, artificial intelligence (AI) has however never been tried. We implemented an AI prediction model integrated with hospital information system (HIS) to clarify this issue. Methods We included 3,715 patients with hyperglycemic crises from emergency departments (ED) between 2009 and 2018. Patients were randomized into a 70%/30% split for AI model training and testing. Twenty-two feature variables from their electronic medical records were collected, and multilayer perceptron (MLP) was used to construct an AI prediction model to predict sepsis or septic shock, intensive care unit (ICU) admission, and all-cause mortality within 1 month. Comparisons of the performance among random forest, logistic regression, support vector machine (SVM), K-nearest neighbor (KNN), Light Gradient Boosting Machine (LightGBM), and MLP algorithms were also done. Results Using the MLP model, the areas under the curves (AUCs) were 0.808 for sepsis or septic shock, 0.688 for ICU admission, and 0.770 for all-cause mortality. MLP had the best performance in predicting sepsis or septic shock and all-cause mortality, compared with logistic regression, SVM, KNN, and LightGBM. Furthermore, we integrated the AI prediction model with the HIS to assist physicians for decision making in real-time. Conclusions A real-time AI prediction model is a promising method to assist physicians in predicting adverse outcomes in ED patients with hyperglycemic crises. Further studies on the impact on clinical practice and patient outcome are warranted.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Rahman Ashena ◽  
Minou Rabiei ◽  
Vamegh Rasouli ◽  
Amir H. Mohammadi ◽  
Siamak Mishani

Abstract Proper selection of the drilling parameters and dynamic behavior is a critical factor in improving drilling performance and efficiency. Therefore, the development of an efficient artificial intelligence (AI) method to predict the appropriate control parameters is critical for drilling optimization. The AI approach presented in this paper uses the power of optimized artificial neural networks (ANNs) to model the behavior of the non-linear, multi-input/output drilling system. The optimization of the model was achieved by optimizing the controllers (combined genetic algorithm (GA) and pattern search (PS)) to reach the global optima, which also provides the drilling planning team with a quantified recommendation on the appropriate optimal drilling parameters. The optimized ANN model used drilling parameters data recorded real-time from drilling practices in different lithological units. Representative portions of the data sets were utilized in training, testing, and validation of the model. The results of the analysis have demonstrated the AI method to be a promising approach for simulation and prediction of the behavior of the complex multi-parameter drilling system. This method is a powerful alternative to traditional analytic or real-time manipulation of the drilling parameters for mitigation of drill string vibrations and invisible lost time (ILT). The utilization can be extended to the field of drilling control and optimization, which can lead to a great contribution of 73% in reduction of the drilling time.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Abdulmalek Ahmed ◽  
Salaheldin Elkatatny ◽  
Abdulwahab Ali

Abstract Several correlations are available to determine the fracture pressure, a vital property of a well, which is essential in the design of the drilling operations and preventing problems. Some of these correlations are based on the rock and formation characteristics, and others are based on log data. In this study, five artificial intelligence (AI) techniques predicting fracture pressure were developed and compared with the existing empirical correlations to select the optimal model. Real-time data of surface drilling parameters from one well were obtained using real-time drilling sensors. The five employed methods of AI are functional networks (FN), artificial neural networks (ANN), support vector machine (SVM), radial basis function (RBF), and fuzzy logic (FL). More than 3990 datasets were used to build the five AI models by dividing the data into training and testing sets. A comparison between the results of the five AI techniques and the empirical fracture correlations, such as the Eaton model, Matthews and Kelly model, and Pennebaker model, was also performed. The results reveal that AI techniques outperform the three fracture pressure correlations based on their high accuracy, represented by the low average absolute percentage error (AAPE) and a high coefficient of determination (R2). Compared with empirical models, the AI techniques have the advantage of requiring less data, only surface drilling parameters, which can be conveniently obtained from any well. Additionally, a new fracture pressure correlation was developed based on ANN, which predicts the fracture pressure with high precision (R2 = 0.99 and AAPE = 0.094%).


Sign in / Sign up

Export Citation Format

Share Document