Determining Downhole Flow Rates of Oil and Gas in Oil Wells Using Pressure Drop and Spinner Response Measurements

Author(s):  
X.Z. Gang ◽  
M. Golan ◽  
J. Sveen

2012 ◽  
Vol 2012 ◽  
pp. 1-4
Author(s):  
F. Boukadi ◽  
V. Singh ◽  
R. Trabelsi ◽  
F. Sebring ◽  
D. Allen ◽  
...  

Oil and gas separators were one of the first pieces of production equipment to be used in the petroleum industry. The different stages of separation are completed using the following three principles: gravity, centrifugal force, and impingement. The sizes of the oil droplets, in the production water, are based mainly on the choke valve pressure drop. The choke valve pressure drop creates a shearing effect; this reduces the ability of the droplets to combine. One of the goals of oil separation is to reduce the shearing effect of the choke. Separators are conventionally designed based on initial flow rates; as a result, the separator is no longer able to accommodate totality of produced fluids. Changing fluid flow rates as well as emulsion viscosity effect separator design. The reduction in vessel performance results in recorded measurements that do not match actual production levels inducing doubt into any history matching process and distorting reservoir management programs. In this paper, the new model takes into account flow rates and emulsion viscosity. The generated vessel length, vessel diameter, and slenderness ratio monographs are used to select appropriate separator size based on required retention time. Model results are compared to API 12J standards.



1980 ◽  
Vol 102 (2) ◽  
pp. 82-91
Author(s):  
H. D. Beggs ◽  
J. P. Brill ◽  
E. A. Proan˜o ◽  
C. E. Roman-Lazo

Subsurface safety valves (SSSVs) are installed in offshore oil and gas wells to shut in the wells in case of pressure loss at the wellhead. The selection of these SSSVs requires prediction of the oil and gas flow rates at which the valve will close. A study was performed to improve the design criteria used in the selection. Improved correlations were developed to predict pressure drop across a SSSV as a function of flow rates, and the pressure drop at which a SSSV will close.



2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Mohamed A. Abd El-Moniem ◽  
◽  
Ahmed H. El-Banbi ◽  

Oil and gas production represents an essential source of energy. Optimization of oil and gas production systems requires accurate calculation of pressure drop in tubing and flowlines. Many empirical correlations and mechanistic models exist to calculate pressure drop in tubing and flowlines. Previous work has shown that some correlations provide more accurate results under certain flow conditions, PVT data, and well configurations than others. However, the effects of errors in input data on the selection of which correlations to use have not been investigated. This paper studies different multiphase flow correlations to determine the effects of their input parameters on (1) the accuracy of calculated pressure drop and (2) the selection of best correlation. A database consisting of 33 oil wells and 32 gas wells was selected, and a commercial software was used to build different well models. A total of 715 well models were constructed and used to investigate the effects of errors in correlations inputs on both the calculated bottomhole pressure and the selection of best correlation(s). The methodology was based on perturbing the values of the selected input parameters and calculating the new predicted bottomhole flowing pressure. Then, the effects of error in input parameters on how the calculated bottomhole pressure was different from observed data were quantified. The effect of this error in input parameters was also checked against the algorithm that selects the best correlation(s). It was found that errors in input GOR have the greatest effects for oil wells, while gas specific gravity and the tubing roughness are the most effective parameters for gas wells. The results were integrated into a rule-based expert system. A new set of data, consisting of 220 cases from 10 new oil wells and 10 new gas wells, was used to validate the expert system. The expert system was found to predict the best correlation(s) with a success rate of 80%, and it also identifies the input parameters whose error would affect the value of calculated bottomhole pressure significantly. Finally, the rules of the expert system were programmed into a VBA-Code to ease its use.



2013 ◽  
Vol 634-638 ◽  
pp. 3613-3617 ◽  
Author(s):  
Yang Gao

This submarine pipeline was used to transport water originally, however, it is an oil-gas mixed transportation pipeline without heat preservation now. Because of the differences between the physical properties of oil-gas and water, we should take the gas and liquid viscosity, density and interfacial tension and other factors into account to establish a new submarine pipeline pressure drop model .In this passage, according to the field data provided by the 20B platform, 20A platform, 251B platform, cb502 platform of submarine pipeline, we apply the methods of comparative analysis and mathematical simulation to establish Beggs-Brill submarine pipeline pressure drop model and the temporary oil-free thermal insulation of the pressure drop and mathematical model, we also make the analysis of a variety of factors impacting on the pipeline pressure drop, including the starting temperature of media, gas liquid flow rates, pipe diameter, angle of inclination,Provide a reference basis to design submarine pipeline.



1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.



1996 ◽  
Vol 118 (1) ◽  
pp. 29-35 ◽  
Author(s):  
K. Minemura ◽  
K. Egashira ◽  
K. Ihara ◽  
H. Furuta ◽  
K. Yamamoto

A turbine flowmeter is employed in this study in connection with offshore oil field development, in order to measure simultaneously both the volumetric flow rates of air-water two-phase mixture. Though a conventional turbine flowmeter is generally used to measure the single-phase volumetric flow rate by obtaining the rotational rotor speed, the method proposed additionally reads the pressure drop across the meter. After the pressure drop and rotor speed measured are correlated as functions of the volumetric flow ratio of the air to the whole fluid and the total volumetric flow rate, both the flow rates are iteratively evaluated with the functions on the premise that the liquid density is known. The evaluated flow rates are confirmed to have adequate accuracy, and thus the applicability of the method to oil fields.



1975 ◽  
Vol 71 (2) ◽  
pp. 361-383 ◽  
Author(s):  
B. P. Ho ◽  
L. G. Leal

The creeping motion through a circular tube of neutrally buoyant Newtonian drops which have an undeformed radius comparable to that of the tube was studied experimentally. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop owing to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow are reported for various viscosity ratios, total flow rates and drop sizes.



2016 ◽  
Vol 20 (suppl. 2) ◽  
pp. 463-470
Author(s):  
Djordjije Doder ◽  
Biljana Miljkovic ◽  
Borivoj Stepanov ◽  
Ivan Pesenjanski

The paper presents the results of an experimental investigation of air pressure drop while flowing through wheat straw beds. According to Darcy?s law, the smaller the porosity of the bed is, the bigger the pressure drop will be. The investigation was conducted using three different porosities (or three bed densities), and for two different air flow rates. After determining porosity (which is directly measurable), the permeability of straw could be found. For high flow velocities, such as the velocity of air flowing through a straw bale, the Forchheimer equation becomes more relevant as a correction of Darcy?s law with inertial effects included. Otherwise, the permeability tensor depends only on the geometry of the porous medium. With permeability known, the Forchheimer equation coefficients can be easily estimated. These results may be important for the future development of efficient biomass combustion facilities. The measurement methods and facility characteristics are described in more detail.



Author(s):  
Ashish Kotwal ◽  
Che-Hao Yang ◽  
Clement Tang

The current study shows computational and experimental analysis of multiphase flows (gas-liquid two-phase flow) in channels with sudden area change. Four test sections used for sudden contraction and expansion of area in experiments and computational analysis. These are 0.5–0.375, 0.5–0.315, 0.5–0.19, 0.5–0.14, inversely true for expansion channels. Liquid Flow rates ranging from 0.005 kg/s to 0.03 kg/s employed, while gas flow rates ranging from 0.00049 kg/s to 0.029 kg/s implemented. First, single-phase flow consists of only water, and second two-phase Nitrogen-Water mixture flow analyzed experimentally and computationally. For Single-phase flow, two mathematical models used for comparison: the two transport equations k-epsilon turbulence model (K-Epsilon), and the five transport equations Reynolds stress turbulence interaction model (RSM). A Eulerian-Eulerian multiphase approach and the RSM mathematical model developed for two-phase gas-liquid flows based on current experimental data. As area changes, the pressure drop observed, which is directly proportional to the Reynolds number. The computational analysis can show precise prediction and a good agreement with experimental data when area ratio and pressure differences are smaller for laminar and turbulent flows in circular geometries. During two-phase flows, the pressure drop generated shows reasonable dependence on void fraction parameter, regardless of numerical analysis and experimental analysis.



Sign in / Sign up

Export Citation Format

Share Document