Deep Water Oil Production System

1968 ◽  
Author(s):  
R.W. Walker

Since early 1980, BP has been developing the conceptual design of a Single-Well Oil Production System or SWOPS. This paper outlines the concept and discusses the design and the operational criteria that have been applied in this early work. It further examines some of the innovative areas of technology that have been included in this new approach and outlines the work of the detail design phase, which has just started.


1977 ◽  
Vol 99 (1) ◽  
pp. 164-169
Author(s):  
W. E. Gammage ◽  
J. E. Ortloff ◽  
M. L. Teers ◽  
J. B. Caldwell

A multiline marine production riser and floating production, storage, and terminal facility may be required for economic development of oil and gas reserves in remote, deep water locations. A deep water production riser design has evolved through study, analyses, and model testing. In order to gain experience, development confidence, and improve the riser design prior to commercial application, a prototype has been built for testing as part of Exxon’s Submerged Production System offshore test in the Gulf of Mexico. This paper treats the design, manufacture, and installation of the prototype multiline marine production riser system.


2019 ◽  
Vol 255 ◽  
pp. 02001 ◽  
Author(s):  
Inyang John ◽  
Andrew-Munot Magdalene ◽  
Syed Shazali Syed Tarmizi ◽  
Johnathan Tanjong Shirley

This paper reviews key production process for crude palm oil and highlights factors that highly influence the production of crude palm oil. This paper proposes a generic conceptual model for crude palm production process considering these factors. The conceptual model could be modified to consider other factors not included in this paper. The future research would be to construct a simulation model based on the conceptual model proposed in this paper and analyse the effect of these factors on the performance of crude palm oil production system.


2012 ◽  
Vol 248 ◽  
pp. 119-123
Author(s):  
Duan Yin Zhu ◽  
Jian Ning Xu ◽  
Yan Xiong Gao ◽  
Wen Jie Lv

It aimed to dynamic change of oilfield productivity, maked sure that the progressing cavity pump is working in a highly efficient region. It combined variable frequency conversion technology and dynamic liquid level height control technology, the closed-loop control of oil production system with progressing cavity pump is made up of rotation-speed and torsion sensor, stepless motor, frequency converter, PLC and progressing cavity pump. The result show that the system can control the pump submergence depth by adjusting the rotation-speed and torsion of polish rod, and make sure the pump working in a highly efficient region finally. This system also can increase recovery efficiency and pump service life.


2011 ◽  
Vol 148-149 ◽  
pp. 1000-1006 ◽  
Author(s):  
Chang Yong Wang ◽  
Hong Huan Zhang ◽  
Meng Lan Duan

That the oil and gas exploration and development is extending into deep water proceeds the rapidly shift to subsea production system. However, complex subsea equipment and frequency offshore accidents aroused the concern on the risk assessment of subsea system. The paper illustrates the hazard aspects which should be focused on in the subsea equipment compared with the surface equipment. The hazards identification and risk analysis on subsea X-tree system is carried out. A general risk-prevent process of subsea X-tree system is illustrated, so does the reliability analysis process. Besides, some commendations on subsea detection and maintenance are presented in the paper.


1980 ◽  
Vol 102 (1) ◽  
pp. 30-34
Author(s):  
J. A. Burkhardt ◽  
T. W. Childers ◽  
R. E. Anderson ◽  
W. D. Loth ◽  
T. W. Michie

The offshore pilot test of Exxon’s Submerged Production System (SPS) has reached a successful conclusion. This pilot test encompassed the entire spectrum of SPS equipment, spanning from the well completion intervals to, but not including, common surface processing and storage facilities. Since the SPS is designed to meet all the life cycle needs of a subsea field, one of the objectives of the pilot test was to evaluate both the techniques and the equipment used to install, operate, and maintain a prototype version of the SPS. The equipment under test was designed for use in water depths up to 2000 ft, but with minor modifications it is capable of operating in significantly greater depths. Evaluation of pilot test results has shown that the deep water installation techniques are practicable and that the deep water maintenance machinery is competent to repair any failures likely to occur in an operating system. One of the most significant problems in conducting the pilot test was achieving adequate quality control during equipment manufacture. The test results have demonstrated that, with relatively minor modifications, the SPS is suitable for commercial application.


Sign in / Sign up

Export Citation Format

Share Document