scholarly journals Comparative profiling of microRNA expression in the developing seeds of high- and low-oil tea oil camellia (Camellia oleifera) cultivars

2019 ◽  
Author(s):  
Bo Wu ◽  
Chengjiang Ruan ◽  
Wanchen Zhang ◽  
Asad Hussain Shah ◽  
Sihei Liu

Abstract Background Tea oil camellia (Camellia oleifera), an important woody oil tree, is a source of seed oil of high nutritional and medicinal values and has been widely planted in southern China. However, there are few reports on the identification of miRNAs involved in seed lipid metabolism in high- and low-oil cultivars of tea oil camellia. Results An miRNA sequencing database was constructed for an Illumina platform, which was used to perform high-throughput small RNA sequencing of seeds of high- and low-oil cultivars of tea oil camellia at four different developmental stages, and the important relevant miRNAs and their target genes were identified. A total of 196 miRNAs, including 156 known miRNAs from 35 families and 40 novel miRNAs, were identified, and 55 significantly differentially expressed miRNAs were found. An integrated analysis of miRNA and mRNA transcriptome sequence data and qRT-PCR-based information was performed and revealed that 10 miRNA-mRNA function modules were related to lipid metabolism and 23 miRNA-mRNA function modules were involved in the regulation of seed size. Conclusion Mining and studying the expression patterns and functions of miRNAs and their regulatory target genes can not only promote the development of miRNAs related to tea oil camellia in public resource databases but also provide important theoretical value and a scientific basis for the genetic improvement of new varieties of tea oil camellia in the future.

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Bo Wu ◽  
Chengjiang Ruan ◽  
Asad Hussain Shah ◽  
Denghui Li ◽  
He Li ◽  
...  

Tea oil camellia (Camellia oleifera), an important woody oil tree, is a source of seed oil of high nutritional and medicinal value that is widely planted in southern China. However, there is no report on the identification of the miRNAs involved in lipid metabolism and seed development in the high- and low-oil cultivars of tea oil camellia. Thus, we explored the roles of miRNAs in the key periods of oil formation and accumulation in the seeds of tea oil camellia and identified miRNA–mRNA regulatory modules involved in lipid metabolism and seed development. Sixteen small RNA libraries for four development stages of seed oil biosynthesis in high- and low-oil cultivars were constructed. A total of 196 miRNAs, including 156 known miRNAs from 35 families, and 40 novel miRNAs were identified, and 55 significantly differentially expressed miRNAs were found, which included 34 upregulated miRNAs, and 21 downregulated miRNAs. An integrated analysis of the miRNA and mRNA transcriptome sequence data revealed that 10 miRNA–mRNA regulatory modules were related to lipid metabolism; for example, the regulatory modules of ath-miR858b–MYB82/MYB3/MYB44 repressed seed oil biosynthesis, and a regulation module of csi-miR166e-5p–S-ACP-DES6 was involved in the formation and accumulation of oleic acid. A total of 23 miRNA–mRNA regulatory modules were involved in the regulation of the seed size, such as the regulatory module of hpe-miR162a_L-2–ARF19, involved in early seed development. A total of 12 miRNA–mRNA regulatory modules regulating growth and development were identified, such as the regulatory modules of han-miR156a_L+1–SPL4/SBP2, promoting early seed development. The expression changes of six miRNAs and their target genes were validated using quantitative real-time PCR, and the targeting relationship of the cpa-miR393_R-1–AFB2 regulatory module was verified by luciferase assays. These data provide important theoretical values and a scientific basis for the genetic improvement of new cultivars of tea oil camellia in the future.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peirong Li ◽  
Tongbing Su ◽  
Deshuang Zhang ◽  
Weihong Wang ◽  
Xiaoyun Xin ◽  
...  

AbstractHeterosis is a complex phenomenon in which hybrids show better phenotypic characteristics than their parents do. Chinese cabbage (Brassica rapa L. spp. pekinensis) is a popular leafy crop species, hybrids of which are widely used in commercial production; however, the molecular basis of heterosis for biomass of Chinese cabbage is poorly understood. We characterized heterosis in a Chinese cabbage F1 hybrid cultivar and its parental lines from the seedling stage to the heading stage; marked heterosis of leaf weight and biomass yield were observed. Small RNA sequencing revealed 63 and 50 differentially expressed microRNAs (DEMs) at the seedling and early-heading stages, respectively. The expression levels of the majority of miRNA clusters in the F1 hybrid were lower than the mid-parent values (MPVs). Using degradome sequencing, we identified 1,819 miRNA target genes. Gene ontology (GO) analyses demonstrated that the target genes of the MPV-DEMs and low parental expression level dominance (ELD) miRNAs were significantly enriched in leaf morphogenesis, leaf development, and leaf shaping. Transcriptome analysis revealed that the expression levels of photosynthesis and chlorophyll synthesis-related MPV-DEGs (differentially expressed genes) were significantly different in the F1 hybrid compared to the parental lines, resulting in increased photosynthesis capacity and chlorophyll content in the former. Furthermore, expression of genes known to regulate leaf development was also observed at the seedling stage. Arabidopsis plants overexpressing BrGRF4.2 and bra-miR396 presented increased and decreased leaf sizes, respectively. These results provide new insight into the regulation of target genes and miRNA expression patterns in leaf size and heterosis for biomass of B. rapa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Biao Li ◽  
Jinzeng Yang ◽  
Yan Gong ◽  
Yu Xiao ◽  
Qinghua Zeng ◽  
...  

Liver is an important metabolic organ of mammals. During each transitional period of life, liver metabolism is programmed by a complex molecular regulatory system for multiple physiological functions, many pathways of which are regulated by hormones and cytokines, nuclear receptors, and transcription factors. To gain a comprehensive and unbiased molecular understanding of liver growth and development in Ningxiang pigs, we analyzed the mRNA, microRNA (miRNA), and proteomes of the livers of Ningxiang pigs during lactation, nursery, and fattening periods. A total of 22,411 genes (19,653 known mRNAs and 2758 novel mRNAs), 1122 miRNAs (384 known miRNAs and 738 novel miRNAs), and 1123 unique proteins with medium and high abundance were identified by high-throughput sequencing and mass spectrometry. We show that the differences in transcriptional, post-transcriptional, or protein levels were readily identified by comparing different time periods, providing evidence that functional changes that may occur during liver development are widespread. In addition, we found many overlapping differentially expressed genes (DEGs)/differentially expressed miRNAs (DEMs)/differentially expressed proteins (DEPs) related to glycolipid metabolism in any group comparison. These overlapping DEGs/DEMs/DGPs may play an important role in functional transformation during liver development. Short Time-series Expression Miner (STEM) analysis revealed multiple expression patterns of mRNA, miRNA, and protein in the liver. Furthermore, several diverse key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including immune defense, glycolipid metabolism, protein transport and uptake, and cell proliferation and development, were identified by combined analysis of DEGs and DGPs. A number of predicted miRNA–mRNA–protein pairs were found and validated by qRT-PCR and parallel reaction monitoring (PRM) assays. The results provide new and important information about the genetic breeding of Ningxiang pigs, which represents a foundation for further understanding the molecular regulatory mechanisms of dynamic development of liver tissue, functional transformation, and lipid metabolism.


2018 ◽  
Vol 50 (5) ◽  
pp. 1638-1658 ◽  
Author(s):  
Hong Li ◽  
Zhenzhen Gu ◽  
Liyu Yang ◽  
Yadong Tian ◽  
Xiangtao Kang ◽  
...  

Background/Aims: Accumulating evidences have demonstrated that long noncoding RNAs (lncRNA) play important roles in hepatic lipid metabolism in mammals. However, no systematic screening of the potential lncRNAs in the livers of laying hens has been performed, and few studies have been reported concerning the effects of the lncRNAs on lipid metabolism in the livers of chickens during egg-laying period. The purpose of this study was to compare the difference in lncRNA expression in the livers of pre-laying and peak-laying hens at the age of 20 and 30 weeks old by transcriptome sequencing and to investigate the interaction networks among lncRNAs, mRNAs and miRNAs. Moreover, the regulatory mechanism and biological function of lncLTR, a significantly differentially expressed lncRNA in the liver between pre- and peak-laying hens, was explored in vitro and in vivo. Methods: Bioinformatics analyses were conducted to identify the differentially expressed (DE) lncRNAs between the two groups of hens. The target genes of the DE lncRNA were predicated for further functional enrichment. An integrated analysis was performed among the DE lncRNA datasets, DE mRNAs and DE miRNA datasets obtained from the same samples to predict the interaction relationship. In addition, in vivo and in vitro trials were carried out to determine the expression regulation of lncLTR, and polymorphism association analysis was conducted to detect the biological role of ncLTR. Results: A total of 124 DE lncRNAs with a P-value ≤ 0.05 were identified. Among them, 44 lncRNAs including 30 known and 14 novel lncRNAs were significant differentially expressed (SDE) with FDR ≤ 0.05. Thirty-two lncRNAs were upregulated and 12 were downregulated in peak-laying group compared with pre-laying group. The functional enrichment results revealed that target genes of some lncRNAs are involved in the lipid metabolism process. Integrated analysis suggested that some of the genes involved in lipid metabolism might be regulated by both the lncRNA and the miRNA. In addition, an upregulated lncRNA, designated lncLTR, was demonstrated to be induced by estrogen via ERβ signaling. The c242. G>A SNP in lncLTR was significantly associated with chicken carcass weight, evisceration weight, semi-evisceration weight, head weight, double-wing weight, claw weight traits, and blood biochemical index, especially for the blood triglyceride content. Conclusion: A series of lncRNAs associated with lipid metabolism in the livers of chickens were identified by transcriptome sequencing and functional analysis, providing a valuable data resource for further studies on chicken hepatic metabolism activities. LncLTR was regulated by estrogen via ERβ signaling and associated with chicken carcass trait and blood triglyceride content.


2021 ◽  
Vol 22 (7) ◽  
pp. 3626
Author(s):  
Panayiota L. Papasavva ◽  
Nikoletta Y. Papaioannou ◽  
Petros Patsali ◽  
Ryo Kurita ◽  
Yukio Nakamura ◽  
...  

MicroRNAs (miRNAs) are small non-coding RNAs crucial for post-transcriptional and translational regulation of cellular and developmental pathways. The study of miRNAs in erythropoiesis elucidates underlying regulatory mechanisms and facilitates related diagnostic and therapy development. Here, we used DNA Nanoball (DNB) small RNA sequencing to comprehensively characterize miRNAs in human erythroid cell cultures. Based on primary human peripheral-blood-derived CD34+ (hCD34+) cells and two influential erythroid cell lines with adult and fetal hemoglobin expression patterns, HUDEP-2 and HUDEP-1, respectively, our study links differential miRNA expression to erythroid differentiation, cell type, and hemoglobin expression profile. Sequencing results validated by reverse-transcription quantitative PCR (RT-qPCR) of selected miRNAs indicate shared differentiation signatures in primary and immortalized cells, characterized by reduced overall miRNA expression and reciprocal expression increases for individual lineage-specific miRNAs in late-stage erythropoiesis. Despite the high similarity of same-stage hCD34+ and HUDEP-2 cells, differential expression of several miRNAs highlighted informative discrepancies between both cell types. Moreover, a comparison between HUDEP-2 and HUDEP-1 cells displayed changes in miRNAs, transcription factors (TFs), target genes, and pathways associated with globin switching. In resulting TF-miRNA co-regulatory networks, major therapeutically relevant regulators of globin expression were targeted by many co-expressed miRNAs, outlining intricate combinatorial miRNA regulation of globin expression in erythroid cells.


2020 ◽  
Author(s):  
Bo Wu ◽  
Chengjiang Ruan ◽  
Asad Hussain Shah ◽  
Sihei Liu

Abstract BackgroundTea oil camellia ( Camellia oleifera ), an important woody oil tree, is a source of seed oil of high nutritional and medicinal values and has been being widely planted in southern China. However, there is no report on the identification of miRNAs involved in lipid metabolism and seed development in high- and low-oil cultivars of tea oil camellia. Thus, we explored the roles of miRNAs in the critical period of oil formation and accumulation in tea oil camellia, and identified miRNA-mRNA regulatory modules involved in lipid metabolism and seed development. ResultsSixteen small RNA libraries for high- and low-oil cultivars of the critical period of oil biosynthesis were constructed. A total of 196 miRNAs, including 156 known miRNAs from 35 families and 40 novel miRNAs, were identified, and 55 significantly differentially expressed miRNAs were found, which included 34 up-regulated miRNAs and 21 down-regulated miRNAs. An integrated analysis of miRNA and mRNA transcriptome sequence data and qRT-PCR-based information was performed and revealed that nine miRNA-mRNA regulatory modules were related to lipid metabolism, such as the negative regulatory modules of ath-miR858b- MYB82 / MYB3 / MYB44 represses seed oil biosynthesis and a positive regulation module of csi-miR166e-5p- S-ACP - DES6 for formation and accumulation of oleic acid. Twenty-tree miRNA-mRNA regulatory modules were involved in the regulation of seed size, such as a negative regulatory module of hpe-miR162a_L-2- ARF19 involved in early seed development. Twelve miRNA-mRNA regulatory modules regulating growth and development were identified, such as the negative regulatory modules of han-miR156a_L+1- SPL4 / SBP2 promoting early seed development. The targeting relationship of the cpa-miR393_R-1-AFB2 regulatory module were verified by luciferase activity assays. ConclusionMultiple microRNAs (miRNAs) were identified to involve in developing seeds of tea oil camellia, especially discovering several miRNA-mRNA regulatory modules involving in seed development and lipid metabolism. These data provide important theoretical value and a scientific basis for the genetic improvement of new varieties of tea oil camellia in the future.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1178
Author(s):  
Chang-Fei Guo ◽  
Hui-Peng Pan ◽  
Li-He Zhang ◽  
Da Ou ◽  
Zi-Tong Lu ◽  
...  

Tamarixia radiata (Waterston) is a predominant parasitoid of the Asian citrus psyllid (ACP), a destructive citrus pest and vector of huanglongbing (HLB) disease in the fields of southern China. To explore the functioning of target genes in T. radiata, the screening of specific reference genes is critical for carrying out the reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) under different experimental conditions. However, no reference gene(s) for T. radiata has yet been reported. Here, we selected seven housekeeping genes of T. radiata and evaluated their stability under the six conditions (developmental stage, sex, tissue, population, temperature, diet) by using RefFinder software, which contains four different programs (geNorm, ΔCt, BestKeeper, and NormFinder). Pairwise variation was analyzed by geNorm software to determine the optimal number of reference genes during the RT-qPCR analysis. The results reveal better reference genes for differing research foci: 18S and EF1A for the developmental stage; PRS18 and EF1A for sex, PRS18 and RPL13 for different tissues (head, thorax, abdomen); EF1A and ArgK between two populations; β-tubulin and EF1A for different temperatures (5, 15, 25, 35 °C); and ArgK and PRS18 for different feeding diets. Furthermore, when the two optimal and two most inappropriate reference genes were chosen in different temperatures and tissue treatments, respectively, the corresponding expression patterns of HSP70 (as the reporter gene) differed substantially. Our study provides, for the first time, a more comprehensive list of optimal reference genes from T. radiata for use in RT-qPCR analysis, which should prove beneficial for subsequent functional investigations of target gene(s) in this natural enemy of ACP.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yiting Chen ◽  
Chunzhen Cheng ◽  
Xin Feng ◽  
Ruilian Lai ◽  
Minxia Gao ◽  
...  

AbstractKiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This study aimed to analyze and compare the long noncoding RNA (lncRNA) and mRNA expression patterns in ABA-treated (ABA) and room temperature (RT)-stored fruits with those in freshly harvested fruits (CK) as control. A total of 697 differentially expressed genes (DEGs) and 81 differentially expressed lncRNAs (DELs) were identified while comparing ABA with CK, and 458 DEGs and 143 DELs were detected while comparing RT with CK. The Kyoto Encyclopedia of Genes and Genomes analysis of the identified DEGs and the target genes of DELs revealed that genes involved in starch and sucrose metabolism, brassinosteroid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis accounted for a large part. The co-localization networks, including 38 DEGs and 31 DELs in ABA vs. CK, and 25 DEGs and 25 DELs in RT vs. CK, were also performed. Genes related to fruit ripening, such as genes encoding β-galactosidase, mannan endo-1,4-β-mannosidase, pectinesterase/pectinesterase inhibitor, and NAC transcription factor, were present in the co-localization network, suggesting that lncRNAs were involved in regulating kiwifruit ripening. Notably, several ethylene biosynthesis- and signaling-related genes, including one 1-aminocyclopropane-1-carboxylic acid oxidase gene and three ethylene response factor genes, were found in the co-localization network of ABA vs. CK, suggesting that the promoting effect of ABA on ethylene biosynthesis and fruit softening might be embodied by increasing the expression of these lncRNAs. These results may help understand the regulatory mechanism of lncRNAs in ripening and ABA-induced fruit softening of kiwifruit.


2020 ◽  
Author(s):  
Azali Azlan ◽  
Muhammad Amir Yunus ◽  
Ghows Azzam

AbstractThe Asian tiger mosquito, Aedes albopictus (Ae. albopictus), is a highly invasive species that transmit several arboviruses including dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV). Although several studies have identified microRNAs (miRNAs) in Ae. albopictus, it is crucial to extend and improve current annotations with the newly improved genome assembly, and the increase number of small RNA-sequencing data. We combined our high-depth sequence data and 26 public datasets to re-annotate Ae. albopictus miRNAs, and found a total of 110 novel mature miRNAs. We discovered that the expression of novel miRNAs was lower than known miRNAs. Furthermore, compared to known miRNAs, novel miRNAs are prone to be expressed in stage-specific manner. Upon DENV infection, a total of 59 novel miRNAs were differentially expressed, and target prediction analysis revealed that miRNA-target genes were involved in lipid metabolism and protein processing in endoplasmic reticulum. Taken together, miRNA annotation profile provided here is the most comprehensive to date, and we believed that this will facilitate future research in understanding virus-host interactions particularly on the role of miRNAs.


2019 ◽  
Author(s):  
Huilin Xiao ◽  
Chaoping Wang ◽  
Nadeem Khan ◽  
Mengxia Chen ◽  
Weihong Fu ◽  
...  

Abstract The purpose of this study is by extending the analysis of class III peroxidases (PODs) in grapevine and provide further insights into the organ-specific developmental role in transcriptional dynamics and gene duplication analysis of this economically important fruit crop species. Herein, we comprehensively identified 47 PODs in the grapevine genome and are further classified into 7 subgroups based on their phylogenetic analysis. Results of motif composition and gene structure organization analysis revealed that PODs in the same subgroup shared similar conjunction while the protein sequences were highly conserved. Intriguingly, the integrated analysis of chromosomal mapping and gene collinearity analysis proposed that both dispersed and tandem duplication events contributed to the expansion of PODs in grapevine. Also, the gene duplication analysis suggested that most of the genes (20) were dispersed followed by (15) tandem, (9) segmental or whole-genome duplication, and (3) proximal, respectively. The evolutionary analysis of PODs, such as Ka/Ks ratio of the 15 duplicated gene pairs were less than 1.00, indicated that most of the gene pairs exhibiting purifying selection and 7 pairs underwent positive selection with value greater than 1.00. The Gene Ontology Enrichment (GO), Kyoto Encyclopedia of Genes Genomics (KEGG) analysis, and cis-elements prediction also revealed the positive functions of PODs in plant growth and developmental activities, and response to stress stimuli. Further, based on the publically available RNA-sequence data, the expression patterns of PODs in tissue-specific response during several developmental stages revealed diverged expression patterns. Subsequently, 30 genes were selected for RT-PCR validation in response to (NaCl, drought, and ABA), which showed their critical role in grapevine. In conclusion, we predict that these results will lead to novel insights regarding genetic improvement of grapevine.


Sign in / Sign up

Export Citation Format

Share Document