scholarly journals EphA2-mediatedM1-like polarization of microglia attenuatesglioblastoma metastasis

2020 ◽  
Author(s):  
Xiang Liao ◽  
Ru Fang ◽  
Ying Tian ◽  
Chen Chen ◽  
Zhijun Wu ◽  
...  

Abstract BackgroundEphA2 is upregulated in GBM tumor tissue specimens and established cancer cell lines and thought to be an attractive therapeutic target in cancer. We aim to define the role of EphA2 in polarization of microglia.MethodsQuantitative real-time polymerase chain reaction, immunofluorescence staining, and viral transfection-based knockdown and overexpression assays to assess the effect of EphA2 on microglia polarization. iTRAQ-LC-MS/MS and western blot were conducted to detect EphA2 and PI3K-Akt signaling activity. Using the Millicell system as an in vitro co-culture model, we performed transwell and western blot assays investigate the role of EphA2-mediated M1-like of microglia on GBM cells invasion and migration in vitro and in vivo. ResultsIn overexpressing and silencing experiments, we demonstrated that EphA2 contributed to the M1-like polarization of microglia. Mechanistically, PI3K-AKT signaling was the downstream of EphA2 and supported the process of EphA2 mediated the M1-like polarization of microglia. Finally, EphA2 mediated the M1-like polarization of microglia attenuated the migration and invasion ability of GBM cells in vitro and in vivo.ConclusionsOur study indicates that, distinct from its role on cancer cells, EphA2 promoted the M1-like polarization of microglia and further attenuated the metastasis of GBM.Our results provide a new information on rationale for targeting EphA2 to improve treatment outcomes in GBM patients.

2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Yan Jian ◽  
Chun-Hua Xu ◽  
You-Ping Li ◽  
Bin Tang ◽  
She-Hao Xie ◽  
...  

AbstractmicroRNAs (miRNAs) have been found to affect various cancers, and expression of numerous miRNAs is revealed in glioma. However, the role of microRNA-30b-3p (miR-30b-3p) in glioma remains elusive. Therefore, the present study aims to explore the specific mechanism by which miR-30b-3p influence the development of glioma in relation to the AKT signaling pathway. First, glioma cell lines were collected with miR-30b-3p and reversion-inducing cysteine-rich protein with kazal motifs (RECK) expression measured. The functional role of miR-30b-3p and RECK in glioma was determined via gain- and loss-of-function approaches. Subsequently, the expression of invasion- and migration-related factors (MMP-2 and MMP-9) and the AKT signaling pathway-related factors (AKT, p-AKT and PI3K-p85) was detected. Moreover, in vivo experiments were also conducted to investigate how miR-30b-3p influences in vivo tumorigenesis. The results showed that miR-30b-3p was up-regulated and RECK was down-regulated in glioma. RECK was a target gene of miR-30b-3p. Decreased miR-30b-3p and overexpressed RECK led to decreased expression of MMP-2, MMP-9 and p-AKT. Overexpressed RECK and LY294002 could decrease p-AKT and PI3K-p85 expression accompanied with unchanged expression of total protein of AKT. Additionally, proliferation, migration and invasion of glioma cells and tumor formation in nude mice were repressed owing to reduced expression of miR-30b-3p or elevated expression of RECK. In summary, miR-30b-3p inhibition suppresses metastasis of glioma cells by inactivating the AKT signaling pathway via RECK up-regulation, providing a new target for glioma treatment.


Oncogenesis ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Wenjie Xia ◽  
Qixing Mao ◽  
Bing Chen ◽  
Lin Wang ◽  
Weidong Ma ◽  
...  

Abstract The proposed competing endogenous RNA (ceRNA) mechanism suggested that diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs could communicate with each other by competing for binding to shared microRNAs. The ceRNA network (ceRNET) is involved in tumor progression and has become a hot research topic in recent years. To date, more attention has been paid to the role of non-coding RNAs in ceRNA crosstalk. However, coding transcripts are more abundant and powerful than non-coding RNAs and make up the majority of miRNA targets. In this study, we constructed a mRNA-mRNA related ceRNET of lung adenocarcinoma (LUAD) and identified the highlighted TWIST1-centered ceRNET, which recruits SLC12A5 and ZFHX4 as its ceRNAs. We found that TWIST1/SLC12A5/ZFHX4 are all upregulated in LUAD and are associated with poorer prognosis. SLC12A5 and ZFHX4 facilitated proliferation, migration, and invasion in vivo and in vitro, and their effects were reversed by miR-194–3p and miR-514a-3p, respectively. We further verified that SLC12A5 and ZFHX4 affected the function of TWIST1 by acting as ceRNAs. In summary, we constructed a mRNA-mRNA related ceRNET for LUAD and highlighted the well-known oncogene TWIST1. Then we verified that SLC12A5 and ZFHX4 exert their oncogenic function by regulating TWIST1 expression through a ceRNA mechanism.


Oncogene ◽  
2021 ◽  
Author(s):  
Astrid K. Laut ◽  
Carmen Dorneburg ◽  
Axel Fürstberger ◽  
Thomas F. E. Barth ◽  
Hans A. Kestler ◽  
...  

AbstractCHD5, a tumor suppressor at 1p36, is frequently lost or silenced in poor prognosis neuroblastoma (NB) and many adult cancers. The role of CHD5 in metastasis is unknown. We confirm that low expression of CHD5 is associated with stage 4 NB. Forced expression of CHD5 in NB cell lines with 1p loss inhibited key aspects of the metastatic cascade in vitro: anchorage-independent growth, migration, and invasion. In vivo, formation of bone marrow and liver metastases developing from intravenously injected NB cells was delayed and decreased by forced CHD5 expression. Genome-wide mRNA sequencing revealed reduction of genes and gene sets associated with metastasis when CHD5 was overexpressed. Known metastasis-suppressing genes preferentially upregulated in CHD5-overexpressing NB cells included PLCL1. In patient NB, low expression of PLCL1was associated with metastatic disease and poor survival. Knockdown of PLCL1 and of p53 in IMR5 NB cells overexpressing CHD5 reversed CHD5-induced inhibition of invasion and migration in vitro. In summary, CHD5 is a metastasis suppressor in NB.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qi Yang ◽  
Yu-Jie Dong

Abstract Background Ovarian cancer (OC) is characterized by early metastasis and poor prognosis, which threatens the health of women worldwide. Small nucleolar RNA host gene 20 (SNHG20), a long noncoding RNA (lncRNA), has been verified to be significantly up-regulated in several tumors, including OC. MicroRNA-148a (miR-148a)/rho-kinase1 (ROCK1) axis plays an important role in the modulation of tumor development. However, whether SNHG20 can regulate OC progression through miR-148a/ROCK1 axis remains unclear. Normal human ovarian epithelial cell line and four OC cell lines were adopted for in vitro experiments. Real-time PCR was performed to assess the levels of SNHG20 and miR-148a. OC cell proliferation, apoptosis, invasion and migration were detected using clone formation, flow cytometry, transwell, and wound healing assays, respectively. Tumor xenograft assay was applied to evaluate the effect of SNHG20 on tumor growth in vivo. Results Significant higher expression of SNHG20 was observed in OC cell lines. SNHG20 markedly promoted the invasion, migration, proliferation and inhibited the apoptosis of OC cells. SNHG20 enhanced ROCK1 expression by sponging miR-148a, and the direct binding between SNHG20/ROCK1 and miR-148a was identified. Conclusion SNHG20 promoted invasion and migration of OC via targeting miR-148a/ROCK1 axis. The present research may provide a novel insight for the therapeutic strategies of OC.


2020 ◽  
Author(s):  
Han Hong ◽  
Chengjun Sui ◽  
Tao Qian ◽  
Xiaoyong Xu ◽  
Xiang Zhu ◽  
...  

Abstract Background: Long-chain non-coding RNA (LncRNA) plays a key role in the biological processes of tumors. LncRNA CASC15 has been shown to be involved in the development of a variety of tumors. The study aimed to elucidate the mechanism of lncRNA CASC15 in the progression of hepatocellular carcinomas (HCC).Methods: qRT-PCR was used to detect the expression levels of CASC15, miR-2355-5p and Six1 mRNA in HCC tissues and cells. Six1 protein expression levels were detected by Western Blot. CCK-8 experiment, colony formation experiment, Edu staining and Transwell experiment analysis were used to analyze the effects of CASC15, miR-2355-5p and Six1 on cell proliferation, cell invasion and migration. The relationship between CASC15, miR-2355-5p and Six1 was analyzed using bioinformatics analysis and Luciferase.Result: CASC15 was raised in HCC tissues and HCC cells. Down-regulation of CASC15 inhibited the growth, migration, invasion and tumor growth of HCC cells. The expression level of miR-2355-5p was reduced in HCC tissues. In addition, miR-2355-5p inhibitor induced the growth, migration and invasion of HCC cells. MiR-2355-5p was predicted to be a downstream target of CASC15. The expression level of miR-2355-5p was negatively correlated with CASC15 in HCC tumor tissues. Six1 was predicted to be a downstream target of miR-30a-5p. In vitro and in vivo results showed that CASC15/miR-2355-5p can regulate Six1.Conclusion: LncCASC15 regulated the proliferation and invasion of Six1 by binding with miR-2355-5p in HCC, suggesting that CASC15 may be a potential target for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Binru Li ◽  
Libo Zhu ◽  
Linlin Li ◽  
Rui Ma

Long noncoding RNAs (lncRNAs) play nonnegligible roles in the metastasis of non-small-cell lung cancer (NSCLC). This study is aimed at investigating the biological role of lncRNA OXCT1-AS1 in NSCLC metastasis and the underlying regulatory mechanisms. The expression profiles of lncRNA OXCT1-AS1 in different NSCLC cell lines were examined. Then, the biological function of lncRNA OXCT1-AS1 in NSCLC metastasis was explored by loss-of-function assays in vitro and in vivo. Further, the protective effect of lncRNA OXCT1-AS1 on lymphoid enhancer factor 1 (LEF1) was examined using RNA pull-down and RNA immunoprecipitation assays. Additionally, the role of LEF1 in NSCLC metastasis was investigated. Results indicated that lncRNA OXCT1-AS1 expression was significantly increased in NSCLC cell lines. Functional analysis revealed that knockdown of lncRNA OXCT1-AS1 impaired invasion and migration in vitro. Additionally, the ability of lncRNA OXCT1-AS1 to promote NSCLC metastasis was also confirmed in vivo. Mechanistically, through direct interaction, lncRNA OXCT1-AS1 maintained LEF1 stability by blocking NARF-mediated ubiquitination. Furthermore, LEF1 knockdown impaired invasion and migration of NSCLC in vitro and in vivo. Collectively, these data highlight the ability of lncRNA OXCT1-AS1 to promote NSCLC metastasis by stabilizing LEF1 and suggest that lncRNA OXCT1-AS1 represents a novel therapeutic target in NSCLC.


2021 ◽  
Author(s):  
Wenbin Shu ◽  
YuJing Lin ◽  
Yan Yan ◽  
YaoHui Sun ◽  
XiangWen Wu ◽  
...  

Abstract BackgroundInsulin-like growth factor 2 (IGF2) mRNA-binding protein 2 (IGF2BP2), as a m6A “reader”, is known to be an oncogene, and its expression is elevated in multiple tumors. However, the role of IGF2PB2 in esophageal squamous cell carcinoma (ESCC) is still unclear. MethodsThis study aims to investigate the role of IGF2PB2 expression in ESCC proliferation, invasion and migration as well as the possible mechanism. IGF2BP2 expression was found to be elevated in ESCC tissues by qRT-PCR, western blotting, and immunohistochemical (IHC) staining. ResultsKnocking down IGF2BP2 expression prevented the proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of KYSE450 and TE1 cells. Knocking out IGF2BP2 reduced tumorigenesis in vivo. Overexpression of IGF2BP2 was performed, and it was proven that IGF2BP2 had an oncogenic effect in KYSE450 and TE1 cells. Moreover, LY294002, a highly selective inhibitor of PI3K, reversed the effect of IGF2BP2 overexpression on EMT processes. All these results show that the effects of IGF2BP2 on oncogenesis and EMT were clearly exerted via the PI3K/AKT signaling pathway. ConclusionsIn conclusion, this study demonstrates that the oncogenic function of IGF2BP2 is mediated by the PI3K/AKT signaling pathway and is related to EMT in ESCC. In addition, IGF2BP2 can serve as a diagnostic and oncotherapeutic marker in further studies.


2021 ◽  
Author(s):  
Jixu Wang ◽  
Futao Hou ◽  
Lusheng Tang ◽  
Ke Xiao ◽  
Tengfei Yang ◽  
...  

Abstract Background: An increasing number of studies have demonstrated that long non-coding RNAs (lncRNAs) serve as key regulators in tumor development and progression. However, only a few lncRNAs have been functionally characterized in gastric cancer (GC). Methods: Bioinformatics analysis was conducted to find lncRNAs that are associated with GC metastasis. RNA FISH, RIP, and RNA pull down assays were used to study the complementary binding of LINC01564 complementary to the 3’UTR of transcription factor POU2F1. The transcription activation of LINC01564 by POU2F1 as a transcription factor was examined by ChIP assay. In vitro assays such as MTT, cell invasion assay, and clonogenic assay were conducted to examined the impacts of LINC01564 and POU2F1 on GC cell proliferation and invasion. Experiments in vivo were performed to access the impacts of LINC01564 and POU2F1 on GC metastasis. Results: The results showed that LINC01564 complementary bound to the 3’UTR of POU2F1 to form an RNA duplex, whereby stabilizing POU2F1 mRNA and increasing the enrichment in cells. The level of LINC01564 was also increased by POU2F1 through transcription activation. In vitro assays showed that LINC01564 promoted the proliferation, invasion and migration of GC cells through increasing POU2F1. In vivo experiments indicate the promotion of GC proliferation and metastasis by the interaction between LINC01564 and POU2F1. Conclusion: Taken together, our results indicate that the interaction between LINC01564 and POU2F1 promotes the proliferation, migration and invasion of GC cells.


Author(s):  
Chenlong Song ◽  
Chongzhi Zhou

Abstract Background Homeobox A10 (HOXA10) belongs to the HOX gene family, which plays an essential role in embryonic development and tumor progression. We previously demonstrated that HOXA10 was significantly upregulated in gastric cancer (GC) and promoted GC cell proliferation. This study was designed to investigate the role of HOXA10 in GC metastasis and explore the underlying mechanism. Methods Immunohistochemistry (IHC) was used to evaluate the expression of HOXA10 in GC. In vitro cell migration and invasion assays as well as in vivo mice metastatic models were utilized to investigate the effects of HOXA10 on GC metastasis. GSEA, western blot, qRT-PCR and confocal immunofluorescence experiments preliminarily analyzed the relationship between HOXA10 and EMT. ChIP-qPCR, dual-luciferase reporter (DLR), co-immunoprecipitation (CoIP), colorimetric m6A assay and mice lung metastasis rescue models were performed to explore the mechanism by which HOXA10 accelerated the EMT process in GC. Results In this study, we demonstrated HOXA10 was upregulated in GC patients and the difference was even more pronounced in patients with lymph node metastasis (LNM) than without. Functionally, HOXA10 promoted migration and invasion of GC cells in vitro and accelerated lung metastasis in vivo. EMT was an important mechanism responsible for HOXA10-involved metastasis. Mechanistically, we revealed HOXA10 enriched in the TGFB2 promoter region, promoted transcription, increased secretion, thus triggered the activation of TGFβ/Smad signaling with subsequent enhancement of Smad2/3 nuclear expression. Moreover, HOXA10 upregulation elevated m6A level and METTL3 expression in GC cells possible by regulating the TGFB2/Smad pathway. CoIP and ChIP-qPCR experiments demonstrated that Smad proteins played an important role in mediating METTL3 expression. Furthermore, we found HOXA10 and METTL3 were clinically relevant, and METTL3 was responsible for the HOXA10-mediated EMT process by performing rescue experiments with western blot and in vivo mice lung metastatic models. Conclusions Our findings indicated the essential role of the HOXA10/TGFB2/Smad/METTL3 signaling axis in GC progression and metastasis.


Sign in / Sign up

Export Citation Format

Share Document