scholarly journals Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars

2020 ◽  
Author(s):  
Zhiquan Cai ◽  
Qi Gao

Abstract Background: Chenopodium quinoa Willd., a halophytic crop, shows great variability among different genotypesin response to salt. To investigate the salinitytolerance mechanisms, five contrasting quinoa cultivars belonging to highland ecotype were compared for their seed germination (under 0, 100 and 400 mM NaCl) and seedling’s responses under five salinity levels (0, 100, 200, 300 and 400 mM NaCl). Results: Substantial variations were found in plant size (biomass) and overall salinity tolerance (plant biomass in salt treatment as % of control) among the different quinoa cultivars. Plant salinity tolerance was negatively associated with plant size, especially at lower salinity levels (<300 mM NaCl), but salt tolerance between seed germination and seedling growth is was not closely correlated. Except for shoot/root ratio, all measured plant traits responded to salt in a genotype-specific way. Salt stress resulted in decreased plant height, leaf area, root length, and root/shoot ratio in each cultivar. With increasing salinity levels, leaf superoxide dismutase (SOD) activity and lipid peroxidation generally increased, but catalase (CAT) and peroxidase (POD) activities showed non-linear patterns. Organic solutes (soluble sugar, proline and protein) accumulated in leaves, whereas inorganic ion (Na + and K + )increased but K + /Na + decreased in both leaves and roots. Across different salinity levels and cultivars, without close relationships with antioxidant enzyme activities (SOD, POD, or CAT), salinity tolerance was significantly negatively correlated with leaf organic solute and malondialdehyde contents in leaves and inorganic ion contents in leaves or roots ( not except for root K + content), but positively correlated with K + /Na + ratio in leaves or roots. Conclusion: Our results establish indicate ed that leaf osmoregulation, K + retention, Na + exclusion, and ion homeostasis are the main physiological mechanisms conferring salinity tolerance of these cultivars, rather than the regulations of leaf antioxidative ability.As an index of salinity tolerance, K + /Na + ratio in leaves or roots can be used for the selective breeding of highland quinoa cultivars.

2019 ◽  
Author(s):  
Zhiquan Cai ◽  
Qi Gao

Abstract Background: Chenopodium quinoa Willd., a halophytic crop, shows great variability among different genotypesin response to salt. To investigate the salinitytolerance mechanisms, five contrasting quinoa cultivars belonging to highland ecotype were compared for their seed germination (under 0, 100 and 400 mM NaCl) and seedling’s responses under five salinity levels (0, 100, 200, 300 and 400 mM NaCl). Results: Substantial variations were found in plant size (biomass) and overall salinity tolerance (plant biomass in salt treatment as % of control) among the different quinoa cultivars. Plant salinity tolerance was negatively associated with plant size, especially at lower salinity levels (<300 mM NaCl), but salt tolerance between seed germination and seedling growth is was not closely correlated. Except for shoot/root ratio, all measured plant traits responded to salt in a genotype-specific way. Salt stress resulted in decreased plant height, leaf area, root length, and root/shoot ratio in each cultivar. With increasing salinity levels, leaf superoxide dismutase (SOD) activity and lipid peroxidation generally increased, but catalase (CAT) and peroxidase (POD) activities showed non-linear patterns. Organic solutes (soluble sugar, proline and protein) accumulated in leaves, whereas inorganic ion (Na + and K + )increased but K + /Na + decreased in both leaves and roots. Across different salinity levels and cultivars, without close relationships with antioxidant enzyme activities (SOD, POD, or CAT), salinity tolerance was significantly negatively correlated with leaf organic solute and malondialdehyde contents in leaves and inorganic ion contents in leaves or roots ( not except for root K + content), but positively correlated with K + /Na + ratio in leaves or roots. Conclusion: Our results establish indicate ed that leaf osmoregulation, K + retention, Na + exclusion, and ion homeostasis are the main physiological mechanisms conferring salinity tolerance of these cultivars, rather than the regulations of leaf antioxidative ability.As an index of salinity tolerance, K + /Na + ratio in leaves or roots can be used for the selective breeding of highland quinoa cultivars.


2019 ◽  
Author(s):  
Qi Gao ◽  
Zhiquan Cai

Abstract Background Chenopodium quinoa Willd., a halophytic crop, shows great variability among different genotypes in response to salt. To investigate the salinity tolerance mechanisms, five quinoa cultivars belonging to highland ecotype were compared for their seed germination (under 0, 100 and 400 mM NaCl) and seedling’s responses under five salinity levels (0, 100, 200, 300 and 400 mM NaCl).Results Substantial variations were found in plant size (biomass) and overall salinity tolerance (plant biomass in salt treatment as % of control) among the quinoa cultivars. Plant salinity tolerance was negatively associated with plant size, especially at lower salinity levels (<300 mM NaCl), but salt tolerance between seed germination and seedling growth is not closely correlated. Except for shoot/root ratio, all measured plant traits responded to salt in a genotype-specific way. Salt stress resulted in decreased plant height, leaf area, root length, and root/shoot ratio in each cultivar. With increasing salinity levels, leaf superoxide dismutase (SOD) activity and lipid peroxidation generally increased, but catalase (CAT) and peroxidase (POD) activities showed non-linear patterns. Organic solutes (soluble sugar, proline and protein) accumulated in leaves, whereas inorganic ion (Na + and K + ) increased but K + /Na + decreased in both leaves and roots. Across different salinity levels and cultivars, without close relationships with antioxidant enzyme activities (SOD, POD, or CAT), salinity tolerance was significantly negatively correlated with leaf organic solute and malondialdehyde contents and inorganic ion contents in leaves or roots (not root K + content), but positively correlated with K + /Na + ratio in leaves or roots.Conclusion Our results established that leaf osmoregulation, K + retention, Na + exclusion, and ion homeostasis are the main physiological mechanisms conferring salinity tolerance of these cultivars, rather than the regulations of leaf antioxidative ability. As an index of salinity tolerance, K + /Na + ratio in leaves or roots can be used for the selective breeding of highland quinoa cultivars.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1324 ◽  
Author(s):  
Elsayed Mansour ◽  
Ehab S. A. Moustafa ◽  
El-Sayed M. Desoky ◽  
Mohamed M. A. Ali ◽  
Mohamed A. T. Yasin ◽  
...  

Field-based trials and genotype evaluation until yielding stage are two important steps in improving the salt tolerance of crop genotypes and identifying what parameters can be strong candidates for the better understanding of salt tolerance mechanisms in different genotypes. In this study, the salt tolerance of 18 bread wheat genotypes was evaluated under natural saline field conditions and at three saline irrigation levels (5.25, 8.35, and 11.12 dS m−1) extracted from wells. Multidimensional evaluation for salt tolerance of these genotypes was done using a set of agronomic and physio-biochemical attributes. Based on yield index under three salinity levels, the genotypes were classified into four groups ranging from salt-tolerant to salt-sensitive genotypes. The salt-tolerant genotypes exhibited values of total chlorophyll, gas exchange (net photosynthetic rate, transpiration rate, and stomatal conductance), water relation (relative water content and membrane stability index), nonenzymatic osmolytes (soluble sugar, free proline, and ascorbic acid), antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase), K+ content, and K+/Na+ ratio that were greater than those of salt-sensitive genotypes. Additionally, the salt-tolerant genotypes consistently exhibited good control of Na+ and Cl− levels and maintained lower contents of malondialdehyde and electrolyte leakage under high salinity level, compared with the salt-sensitive genotypes. Several physio-biochemical parameters showed highly positive associations with grain yield and its components, whereas negative association was observed in other parameters. Accordingly, these physio-biochemical parameters can be used as individual or complementary screening criteria for evaluating salt tolerance and improvement of bread wheat genotypes under natural saline field conditions.


2019 ◽  
Author(s):  
Mitali Mahajan ◽  
Surbhi Sharma ◽  
Pawan Kumar ◽  
Probir Kumar Pal

AbstractThough relatively little is understood of adaptation, physiological and metabolic changes of Stevia rebaudiana under exposure to salinity stress, it is hypothesized that exogenous application of potassium (K+) could elevates the salinity tolerance through ions homeostasis. Thus, an experiment was conducted with twenty treatment combinations comprising four salinity levels (irrigation with normal water as control and three level of NaCl at 40, 80 and 120 mM) and five different concentrations of KNO3 (0.0, 2.5, 5.0, 7.5, and 10.0 g L−1). Dry leaf yield was not negatively affected with mild salinity (40 mM). However, the detrimental effects were observed at moderate and higher salinity levels (80 and 120 mM). The uptakes of K+, Ca2+, and N were significantly reduced at higher salinity level, whereas accumulations of Na+ and Cl− ions in plant tissues were substantially increased. Proline content in leaf was also increased significantly (P≤0.05) in response to salt stress. Among the foliar application, KNO3 at 5.0 gL−1 registered significantly (P≤0.05) higher dry leaf yield compared with control. Exogenous application of K+ under moderate salinity stress maintained ion balance in cytosol, particularly K: Na. Thus, the salinity tolerance of stevia can be elevated to some extent through exogenous application of K+.HighlightThe detrimental effects of moderate and higher salinity levels on growth and dry leaf yield of stevia were observed. However, tolerance level can be elevated through exogenous application of KNO3.


HortScience ◽  
2012 ◽  
Vol 47 (4) ◽  
pp. 527-530 ◽  
Author(s):  
Qi Zhang ◽  
Kevin Rue ◽  
Sheng Wang

Salinity tolerance of five buffalograss [Buchloe dactyloides (Nutt.) Englem.] cultivars (Texoka, Cody, Bison, Sharp's Improved II, and Bowie) and three blue grama [Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths] ecotypes (‘Lovington’, ‘Hachita’, and ‘Bad River’) was determined during in vitro seed germination and vegetative growth in a hydroponic system. Seeds were germinated on 0.6% agar medium supplemented with NaCl at 0, 5, 10, 15, and 20 g·L−1. Salinity reduced the final germination rate (FGR) and daily germination rate (DGR). Similarly, shoot dry weight (SDW), longest root length (LRL), and percentage of green tissue (PGT) of mature grasses declined with increasing salinity levels (NaCl = 0, 2.5, 5, 7.5, and 10 g·L−1). However, root dry weight (RDW) was not significantly affected by salinity. Blue grama exhibited a lower reduction in FGR and DGR than buffalograss at salinity levels lower than 10 g·L−1. Germination of all buffalograss cultivars and ‘Hachita’ blue grama was inhibited at salinity levels of 15 and 20 g·L−1 NaCl. However, buffalograss was more salt-tolerant than blue grama at the vegetative growth stage. Variations of salinity tolerance were observed within buffalograss cultivars and blue grama ecotypes, especially during the seed germination stage. Overall, buffalograss appeared to be salt-sensitive during germination but moderately salt-tolerant at the mature stage. However, blue grama was more salt-tolerant at the germination stage than the mature stage. Noticeable differences in salinity tolerance were observed between different germplasms. Therefore, salt tolerance of buffalograss and blue grama may be improved through turfgrass breeding efforts.


HortScience ◽  
2012 ◽  
Vol 47 (8) ◽  
pp. 1163-1170 ◽  
Author(s):  
Masoud Arghavani ◽  
Mohsen Kafi ◽  
Mesbah Babalar ◽  
Roohangiz Naderi ◽  
Md. Anamul Hoque ◽  
...  

Trinexapac-ethyl (TE) is a popular plant growth regulator in the turfgrass industry that inhibits gibberellic acid (GA) biosynthesis and effectively reduces leaf elongation and subsequent clipping production. This greenhouse sand culture experiment was conducted to determine effects of TE application on kentucky bluegrass (Poa pratensis L.) responses to salinity stress. The five salinity levels (0, 20, 40, 60, and 80 mm NaCl) were applied in nutrient solutions and TE treatments (0, 1, and 1.7 g/100 m2) were applied twice at 4-week intervals. Under non-saline conditions and low level salinity conditions, application of TE at 1 g/100 m2 (TE1) increased turf quality (TQ), leaf total non-structural carbohydrates (TNC), and chlorophyll (Chl) content. In high salinity, TE1 alleviated the decline in TQ, antioxidant enzyme activities, leaf TNC, Chl, and K+ content. In addition, treated turf with TE at 1 g/100 m2 had lower proline, Na+, and malondialdehyde (MDA) contents. However, the adverse effects of high salinities were more pronounced when turf was treated by TE at 1.7 g/100 m2 (TE1.7), suggesting that effects of TE on salt tolerance vary with its dosages and salinity levels. We concluded that moderate inhibition of GA biosynthesis by TE enhances salt tolerance in kentucky bluegrass and suggest that enhancement is the result of the maintenance of antioxidant activities, leading to more root growth and greater levels of TNC and Chl content. Chemical names used: 4-(cyclopropyl-β-hydroxymethylene)-3, 5-dioxocyclohexanecarboxylic acid ethyl ester (trinexapac-ethyl).


2008 ◽  
Vol 54 (No. 3) ◽  
pp. 89-99 ◽  
Author(s):  
A. Parvaiz ◽  
S. Satyawati

The ability of plants to tolerate salts is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, specific proteins and certain free radical enzymes to control ion and water flux and support scavenging of oxygen radicals. No well-defined indicators are available to facilitate the improvement in salinity tolerance of agricultural crops through breeding. If the crop shows distinctive indicators of salt tolerance at the whole plant, tissue or cellular level, selection is the most convenient and practical method. There is therefore a need to determine the underlying biochemical mechanisms of salinity tolerance so as to provide plant breeders with appropriate indicators. In this review, the possibility of using these biochemical characteristics as selection criteria for salt tolerance is discussed.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 62 ◽  
Author(s):  
Ibrahim A. A. Mohamed ◽  
Nesma Shalby ◽  
Chenyang Bai ◽  
Meng Qin ◽  
Ramadan A. Agami ◽  
...  

The negative effects of salt stress vary among different rapeseed cultivars. In this study, we investigated the sodium chloride tolerance among 10 rapeseed cultivars based on membership function values (MFV) and Euclidean cluster analyses by exposing seedlings to 0, 100, or 200 mM NaCl. The NaCl toxicity significantly reduced growth, biomass, endogenous K+ levels, relative water content and increased electrolyte leakage, soluble sugar levels, proline levels, and antioxidant enzyme activities. SPAD values were highly variable among rapeseed cultivars. We identified three divergent (tolerant, moderately tolerant, and sensitive) groups. We found that Hua6919 and Yunyoushuang2 were the most salt-tolerant cultivars and that Zhongshuang11 and Yangyou9 were the most salt-sensitive cultivars. The rapeseed cultivars were further subjected to photosynthetic gas exchange and anatomical trait analyses. Among the photosynthetic gas exchange and anatomical traits, the stomatal aperture was the most highly correlated with salinity tolerance in rapeseed cultivars and thus, is important for future studies that aim to improve salinity tolerance in rapeseed. Thus, we identified and characterized two salt-tolerant cultivars that will be useful for breeding programs that aim to develop salt-tolerant rapeseed.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heqin Li ◽  
Haiwang Yue ◽  
Li Li ◽  
Yu Liu ◽  
Haiyan Zhang ◽  
...  

AbstractCrop performance is seriously affected by high salt concentrations in soils. To develop improved seed pre-sowing treatment technologies, it is crucial to improve the salt tolerance of seed germination. Here, we isolated and identified the strain Bacillus sp. MGW9 and developed the seed biostimulant MGW9. The effects of seed biopriming with the seed biostimulant MGW9 in maize (Zea mays L.) under saline conditions were studied. The results show that the strain Bacillus sp. MGW9 has characteristics such as salt tolerance, nitrogen fixation, phosphorus dissolution, and indole-3-acetic acid production. Seed biopriming with the seed biostimulant MGW9 enhanced the performance of maize during seed germination under salinity stress, improving the germination energy, germination percentage, shoot/seedling length, primary root length, shoot/seedling fresh weight, shoot/seedling dry weight, root fresh weight and root dry weight. Seed biostimulant MGW9 biopriming also alleviated the salinity damage to maize by improving the relative water content, chlorophyll content, proline content, soluble sugar content, root activity, and activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, while decreasing the malondialdehyde content. In particular, the field seedling emergence of maize seeds in saline-alkali soil can be improved by biopriming with the seed biostimulant MGW9. Therefore, maize seed biopriming with the seed biostimulant MGW9 could be an effective approach to overcoming the inhibitory effects of salinity stress and promoting seed germination and seedling growth.


Sign in / Sign up

Export Citation Format

Share Document