scholarly journals Transcriptome profiling of human thymic CD4+ and CD8+ T cells compared to primary peripheral T cells

2020 ◽  
Author(s):  
Hanna Helgeland ◽  
Ingvild Gabrielsen ◽  
Helle Akselsen ◽  
Arvind Y.M. Sundaram ◽  
Siri Tennebø Flåm ◽  
...  

Abstract Background: The thymus is a highly specialized organ of the immune system where T cell precursors develop and differentiate into self-tolerant CD4+ or CD8+ T cells. No studies to date have investigated how the human transcriptome profiles differ, between T cells still residing in the thymus and T cells in the periphery. Results: We have performed high-throughput RNA sequencing to characterize the transcriptomes of primary single positive (SP) CD4+ and CD8+ T cells from infant thymic tissue, as well as primary CD4+ and CD8+ T cells from infant and adult peripheral blood, to enable the comparisons across tissues and ages. In addition, we have assessed the expression of candidate genes related to autoimmune diseases in thymic CD4+ and CD8+ T cells. The thymic T cells showed the largest number of uniquely expressed genes, suggesting a more diverse transcription in thymic T cells. Comparing T cells of thymic and blood origin, revealed more differentially expressed genes, than between infant and adult blood. Functional enrichment analysis revealed an over-representation of genes involved in cell cycle and replication in thymic T cells, whereas infant blood T cells were dominated by immune related terms. Comparing adult and infant blood T cells, the former was enriched for inflammatory response, cytokine production and biological adhesion, while upregulated genes in infant blood T cells were associated with cell cycle, cell death and gene expression. Conclusion: This study provides valuable insight into the transcriptomes of the human primary SP T cells still residing within the thymus, and offers a unique comparison to primary blood derived T cells. Interestingly, the majority of autoimmune disease associated genes were expressed in one or more T cell subset, however ~11% of these were not expressed in frequently studied adult peripheral blood.

2019 ◽  
Author(s):  
Hanna Helgeland ◽  
Ingvild Gabrielsen ◽  
Helle Akselsen ◽  
Arvind Y.M. Sundaram ◽  
Siri Tennebø Flåm ◽  
...  

Abstract Background: The thymus is a highly specialized organ of the immune system where T cell precursors develop and differentiate into self-tolerant CD4+ or CD8+ T cells. No studies to date have investigated how the human transcriptome profiles differ, between T cells still residing in the thymus and T cells in the periphery.Results: We have performed high-throughput RNA sequencing to characterize the transcriptomes of primary single positive (SP) CD4+ and CD8+ T cells from infant thymic tissue, as well as primary CD4+ and CD8+ T cells from infant and adult peripheral blood, to enable the comparisons across tissues and ages. In addition, we have assessed the expression of candidate genes related to autoimmune diseases in thymic CD4+ and CD8+ T cells. Thymic SP T cells displayed a broader transcriptome than peripheral T cells, indicated by a higher number of uniquely expressed genes. Comparing T cells of thymic and blood origin, revealed more differentially expressed genes, than between infant and adult blood. Functional enrichment analysis revealed an over-representation of genes involved in cell cycle and replication in thymic T cells, whereas infant blood T cells were dominated by immune related terms. Comparing adult and infant blood T cells, the former was enriched for inflammatory response, cytokine production and biological adhesion, while upregulated genes in infant blood T cells were associated with cell cycle, cell death and gene expression.Conclusion: This study provides valuable insight into the transcriptomes of the human primary SP T cells still residing within the thymus, and offers a unique comparison to the more frequently studied primary blood derived T cells. We discovered that genes involved in migration, homing and recirculation, between peripheral blood and lymphatic tissue, were particularly active in infant blood T cells, suggesting active migration and recirculation in young children.


Blood ◽  
2006 ◽  
Vol 107 (7) ◽  
pp. 2830-2838 ◽  
Author(s):  
Nabila Seddiki ◽  
Brigitte Santner-Nanan ◽  
Stuart G. Tangye ◽  
Stephen I. Alexander ◽  
Michael Solomon ◽  
...  

AbstractRegulatory T cells (TREGs) constitutively expressing CD4, CD25, and the transcription factor Foxp3 can prevent a wide range of experimental and spontaneous autoimmune diseases in mice. In humans, CD4+CD25bright T cells, predominantly within the CD45RO+ activated/memory subset in adults and the CD45RA+ naive T-cell subset in infants, are considered to be the equivalent subset. Using novel combinations of monoclonal antibodies (mAbs), we examined expression of CD25 in human infant thymus, cord blood, adult peripheral blood, lymph node, and spleen. In addition to the CD4+CD25bright T cells, subfractionation on the basis of CD45 splice variants indicated that all samples contained a second distinct population of cells expressing a slightly lower level of CD25. In adult peripheral blood, this population expressed a naive CD45RA+ phenotype. The corresponding population in lymph node, spleen, and cord blood showed some evidence of activation, and expressed markers characteristic of TREGs, such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). Sorted CD4+CD25+CD45RA+ T cells from both cord and adult blood expressed very high levels of mRNA for Foxp3 and manifested equivalent suppressive activity in vitro, indicating that they are bone fide members of the regulatory T-cell lineage. Targeting naive TREGs in adults may offer new means of preventing and treating autoimmune disease.


2020 ◽  
Vol 222 (2) ◽  
pp. 198-202 ◽  
Author(s):  
Mei Jiang ◽  
Yang Guo ◽  
Qing Luo ◽  
ZiKun Huang ◽  
Rui Zhao ◽  
...  

Abstract This study evaluated the significance of lymphocyte subset detection in peripheral blood in the diagnosis and prognosis of coronavirus disease 2019 (COVID-19). Our results revealed that CD3+ T cells, CD4+ T cells, CD8+ T cells, and natural killer cells were significantly decreased in patients with COVID-19. These patients had a relatively slight decrease in CD4+ T cells but a severe decrease in CD8+ T cells. The significantly elevated CD4/CD8 ratio was observed in COVID-19 patients. T-cell subset counts were related to the severity and prognosis of COVID-19, suggesting that the counts of CD8+ T and CD4+ T cells can be used as diagnostic markers of COVID-19 and predictors of disease severity.


Blood ◽  
2004 ◽  
Vol 104 (12) ◽  
pp. 3463-3471 ◽  
Author(s):  
Christoph Hess ◽  
Terry K. Means ◽  
Patrick Autissier ◽  
Tonia Woodberry ◽  
Marcus Altfeld ◽  
...  

CD8 T cells play a key role in host defense against intracellular pathogens. Efficient migration of these cells into sites of infection is therefore intimately linked to their effector function. The molecular mechanisms that control CD8 T-cell trafficking into sites of infection and inflammation are not well understood, but the chemokine/chemokine receptor system is thought to orchestrate this process. Here we systematically examined the chemokine receptor profile expressed on human CD8 T cells. Surprisingly, we found that CXC chemokine receptor 1 (CXCR1), the predominant neutrophil chemokine receptor, defined a novel interleukin-8/CXC ligand 8 (IL-8/CXCL8)–responsive CD8 T-cell subset that was enriched in perforin, granzyme B, and interferon-γ (IFNγ), and had high cytotoxic potential. CXCR1 expression was down-regulated by antigen stimulation both in vitro and in vivo, suggesting antigen-dependent shaping of the migratory characteristics of CD8 T cells. On virus-specific CD8 T cells from persons with a history of Epstein-Barr virus (EBV) and influenza infection, CXCR1 expression was restricted to terminally differentiated effector memory cells. In HIV-1 infection, CXCR1-expressing HIV-1–specific CD8 T cells were present only in persons who were able to control HIV-1 replication during structured treatment interruptions. Thus, CXCR1 identifies a subset of CD8 T cells poised for immediate cytotoxicity and early recruitment into sites of innate immune system activation.


2015 ◽  
Vol 11 (3) ◽  
pp. e1004671 ◽  
Author(s):  
Krista E. van Meijgaarden ◽  
Mariëlle C. Haks ◽  
Nadia Caccamo ◽  
Francesco Dieli ◽  
Tom H. M. Ottenhoff ◽  
...  

1994 ◽  
Vol 179 (2) ◽  
pp. 413-424 ◽  
Author(s):  
G Dadaglio ◽  
S Garcia ◽  
L Montagnier ◽  
M L Gougeon

We have analyzed the V beta usage by CD4+ and CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals in response to an in vitro stimulation with the superantigenic erythrogenic toxin A (ETA) of Streptococcus pyogenes. ETA amplifies specifically CD4+ and CD8+ T cells from control donors expressing the V beta 8 and the V beta 12 elements. When peripheral T cells from asymptomatic HIV-infected individuals were stimulated with ETA, there was a complete lack of activation of the V beta 8+ T cell subset, whereas the V beta 12+ T cell subset responded normally to the superantigen. This V beta-specific anergy, which was also observed in response to staphylococcal enterotoxin E (SEE), affected both CD4+ and CD8+ T cells and represented an intrinsic functional defect rather than a specific lack of response to bacterial superantigens since it was also observed after a stimulation with V beta 8 monoclonal antibodies. The V beta 8 anergic T cells did not express interleukin 2 receptors (IL-2Rs) and failed to proliferate in response to exogenous IL-2 or IL-4, suggesting that this anergy was not a reversible process, at least by the use of these cytokines. The unresponsiveness of the V beta 8 T cell subset is frequent since it was found in 56% of the patients studied, and comparison of the clinical status of responder vs. anergic patients indicated that the only known common factor between them was HIV infection. In addition, it is noteworthy that the anergy of the V beta 8 subset may be a very early phenomenon since it was found in a patient at Centers for Disease Control stage I of the disease. These data provide evidence that a dominant superantigen may be involved in the course of HIV infection and that the contribution of HIV has to be considered.


2018 ◽  
Vol 2 (15) ◽  
pp. 1889-1900 ◽  
Author(s):  
Kieu-Suong Le ◽  
Patricia Amé-Thomas ◽  
Karin Tarte ◽  
Françoise Gondois-Rey ◽  
Samuel Granjeaud ◽  
...  

Key Points A subset of CD8 T cells in some Hodgkin lymphomas shares phenotypic and functional features with CD4 TFH cells.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi123
Author(s):  
Christina Jackson ◽  
John Choi ◽  
JiaJia Zhang ◽  
Anna Piotrowski ◽  
Tobias Walbert ◽  
...  

Abstract BACKGROUND Immune checkpoint inhibitors (ICIs) are not uniformly effective in glioblastoma treatment. Immunogenomic determinants may identify patients who are most likely to benefit from these therapies. Therefore, we compared the immunogenomic phenotype of a responder to combination anti-LAG-3 and anti-PD-1 therapy to non-responders. METHODS We performed T cell receptor (TCR) sequencing and gene expression analysis on pre-treatment, post-chemoradiation, and post-immunotherapy tumor specimens of glioblastoma patients treated with anti-LAG3 in combination with anti-PD-1 after first recurrence (NCT02658981, ongoing). We evaluated T cell clonotypes and immunophenotype of serially collected peripheral blood mononuclear cells (PBMCs) during treatment using multi-parametric flow cytometry. RESULTS To date, six patients have been enrolled in the initial anti-LAG-3 and anti-PD-1 cohort. One patient demonstrated complete response, one had stable disease, and four had progressive disease by radiographic evaluation. The responder demonstrated substantially higher TCR clonality in the resected tumor at initial diagnosis compared to non-responders (mean 0.028 vs. 0.005). Shared tumor infiltrating clonotypes with pre-immunotherapy PBMCs exhibited an increase in frequency from initial resection (6.8%) to resection at recurrence (20%). The responder’s tumor at initial resection exhibited increased gene signatures of PD1low CD8+ T cells, chemokine signaling, and interferon gamma pathways. On PBMC phenotypic analysis, the responder demonstrated significantly higher percentages of CD137+ CD8+T cells (median 8.38% vs 3.24%, p=0.02) and lower percentages of Foxp3+CD137+ CD4+T cells compared to non-responders (median 18.5% vs. 38.5%, p=0.006). Interestingly, dynamic analysis of PBMCs showed that the responder demonstrated a lower percentage of PD1+ CD8+ T cells pre-immunotherapy (median 2.5% vs.12.4%, p=0.002), with persistent decrease over the course of treatment while non-responders showed no consistent pattern. CONCLUSION Our preliminary results demonstrate significant differences in tumor and peripheral blood immunogenomic characteristics between responder and non-responders to anti-LAG3 and anti-PD-1 therapy. These immunogenomic characteristics may help stratify patients’ response to combination ICIs.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3872-3879 ◽  
Author(s):  
Viola Hoffacker ◽  
Anja Schultz ◽  
James J. Tiesinga ◽  
Ralf Gold ◽  
Berthold Schalke ◽  
...  

Abstract Thymomas are the only tumors that are proven to generate mature T cells from immature precursors. It is unknown, however, whether intratumorous thymopoiesis has an impact on the peripheral T-cell pool and might thus be related to the high frequency of thymoma-associated myasthenia gravis. This study shows, using fluorescence-activated cell sorting-based analyses and T-cell proliferation assays, that thymopoiesis and T-cell function in thymomas correspond with immunologic alterations in the blood. Specifically, the proportion of circulating CD45RA+CD8+ T cells is significantly increased in patients with thymoma compared with normal controls, in accordance with intratumorous T-cell development that is abnormally skewed toward the CD8+ phenotype. Moreover, it is primarily the proportion of circulating CD45RA+CD8+ T cells that decreases after thymectomy. The results also demonstrate that T cells reactive toward recombinant autoantigens are distributed equally between thymomas and blood, whereas T-cell responses to foreign antigen (ie, tetanus toxoid) are seen only among circulating T cells and not among thymoma-derived T cells. These functional studies support the hypothesis that thymopoiesis occurring within thymomas alters the peripheral T-cell repertoire. Because many thymomas are enriched with autoantigen-specific T cells, a disturbance of circulating T-cell subset composition by export of intratumorous T cells may contribute to paraneoplastic autoimmune disease arising in patients with thymoma.


Blood ◽  
1990 ◽  
Vol 76 (5) ◽  
pp. 959-964 ◽  
Author(s):  
SP Mulligan ◽  
P Travade ◽  
E Matutes ◽  
C Dearden ◽  
L Visser ◽  
...  

Abstract We undertook a study to determine the specificity of the monoclonal antibody, B-ly-7, for hairy cell leukemia (HCL) by examining the expression in 150 samples from B-cell lymphoproliferative diseases as well as screening for reactivity in a number of other hematologic malignancies. Within the B-cell lineage we found that the expression of B-ly-7 was highly specific for HCL and reacted with all 28 cases examined, as well as with 3 of 9 cases of a variant form of HCL. Cells of other closely related B-cell disorders, prolymphocytic leukemia, and splenic lymphoma with villous lymphocytes were negative. Investigation of the peripheral blood and bone marrow of patients with HCL before and after treatment with alpha-interferon or deoxycoformycin suggests that B-ly-7 may be useful in the assessment of minimal disease after therapy. In addition to HCL, we found that B-ly-7 was positive with cells of three mature, CD4+ T-cell malignancies. In view of the reactivity with malignancies of activated B and T cells, we searched for the expression of B-ly-7 on activated, normal B and T cells and found that B-ly-7 reacted specifically with activated normal peripheral blood CD8+ T cells. B-ly-7 has a number of applications, including the precise classification of mature B-cell neoplasia and the diagnosis HCL and its assessment after treatment. In addition, B-ly-7 recognizes a small subset of T-cell disorders. Its expression on these malignancies and on in vitro activated peripheral blood CD8+ T cells suggests that B- ly-7 detects a lymphocyte activation antigen.


Sign in / Sign up

Export Citation Format

Share Document