scholarly journals IMMU-18. IMMUNOGENOMIC RESPONDER PHENOTYPE FROM A PHASE I TRIAL OF ANTI-LAG3 OR ANTI-CD137 ALONE AND IN COMBINATION WITH ANTI-PD-1 IN PATIENTS WITH RECURRENT GBM

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi122-vi123
Author(s):  
Christina Jackson ◽  
John Choi ◽  
JiaJia Zhang ◽  
Anna Piotrowski ◽  
Tobias Walbert ◽  
...  

Abstract BACKGROUND Immune checkpoint inhibitors (ICIs) are not uniformly effective in glioblastoma treatment. Immunogenomic determinants may identify patients who are most likely to benefit from these therapies. Therefore, we compared the immunogenomic phenotype of a responder to combination anti-LAG-3 and anti-PD-1 therapy to non-responders. METHODS We performed T cell receptor (TCR) sequencing and gene expression analysis on pre-treatment, post-chemoradiation, and post-immunotherapy tumor specimens of glioblastoma patients treated with anti-LAG3 in combination with anti-PD-1 after first recurrence (NCT02658981, ongoing). We evaluated T cell clonotypes and immunophenotype of serially collected peripheral blood mononuclear cells (PBMCs) during treatment using multi-parametric flow cytometry. RESULTS To date, six patients have been enrolled in the initial anti-LAG-3 and anti-PD-1 cohort. One patient demonstrated complete response, one had stable disease, and four had progressive disease by radiographic evaluation. The responder demonstrated substantially higher TCR clonality in the resected tumor at initial diagnosis compared to non-responders (mean 0.028 vs. 0.005). Shared tumor infiltrating clonotypes with pre-immunotherapy PBMCs exhibited an increase in frequency from initial resection (6.8%) to resection at recurrence (20%). The responder’s tumor at initial resection exhibited increased gene signatures of PD1low CD8+ T cells, chemokine signaling, and interferon gamma pathways. On PBMC phenotypic analysis, the responder demonstrated significantly higher percentages of CD137+ CD8+T cells (median 8.38% vs 3.24%, p=0.02) and lower percentages of Foxp3+CD137+ CD4+T cells compared to non-responders (median 18.5% vs. 38.5%, p=0.006). Interestingly, dynamic analysis of PBMCs showed that the responder demonstrated a lower percentage of PD1+ CD8+ T cells pre-immunotherapy (median 2.5% vs.12.4%, p=0.002), with persistent decrease over the course of treatment while non-responders showed no consistent pattern. CONCLUSION Our preliminary results demonstrate significant differences in tumor and peripheral blood immunogenomic characteristics between responder and non-responders to anti-LAG3 and anti-PD-1 therapy. These immunogenomic characteristics may help stratify patients’ response to combination ICIs.

Blood ◽  
2000 ◽  
Vol 96 (5) ◽  
pp. 1994-1995 ◽  
Author(s):  
Masako Moriuchi ◽  
Hiroyuki Moriuchi

Abstract Although it is widely believed that viral clearance is mediated principally by the destruction of infected cells by cytotoxic T cells, noncytolytic antiviral activity of CD8+ T cells may play a role in preventing the progression to disease in infections with immunodeficiency viruses and hepatitis B virus. We demonstrate here that (1) replication of human T-lymphotropic virus type I (HTLV-I) is more readily detected from CD8+ T-cell–depleted (CD8−) peripheral blood mononuclear cells (PBMCs) of healthy HTLV-I carriers than from unfractionated PBMCs, (2) cocultures of CD8− PBMCs with autologous or allogeneic CD8+ T cells suppressed HTLV-I replication, and (3) CD8+ T-cell anti-HTLV-I activity is not abrogated intrans-well cultures in which CD8+ cells are separated from CD8− PBMCs by a permeable membrane filter. These results suggest that class I-unrestricted noncytolytic anti–HTLV-I activity is mediated, at least in part by a soluble factor(s), and may play a role in the pathogenesis of HTLV-I infection.


Author(s):  
L. Sams ◽  
S. Kruger ◽  
V. Heinemann ◽  
D. Bararia ◽  
S. Haebe ◽  
...  

Abstract Purpose This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). Patients and methods Peripheral blood mononuclear cells were isolated before and 30 days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. Results Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0 months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0 months (p = 0.011), respectively. Conclusions Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1595-1603 ◽  
Author(s):  
K Welte ◽  
CA Keever ◽  
J Levick ◽  
MA Bonilla ◽  
VJ Merluzzi ◽  
...  

Abstract The ability of peripheral blood mononuclear cells (PBMC) to produce and respond to interleukin-2 (IL-2) was evaluated in 50 recipients of HLA- identical bone marrow (BM) depleted of mature T cells by soybean agglutination and E rosetting (SBA-E-BM). In contrast to our previous findings in recipients of unfractionated marrow, during weeks 3 to 7 post-SBA-E-BM transplantation (BMT), PBMC from the majority of patients spontaneously released IL-2 into the culture medium. This IL-2 was not produced by Leu-11+ natural killer cells, which were found to be predominant in the circulation at this time, but by T11+, T3+, Ia antigen-bearing T cells. The IL-2 production could be enhanced by coculture with host PBMC frozen before transplant but not by stimulation with mitogenic amounts of OKT3 antibody, thus suggesting an in vivo activation of donor T cells or their precursors by host tissue. Spontaneous IL-2 production was inversely proportional to the number of circulating peripheral blood lymphocytes and ceased after 7 to 8 weeks post-SBA-E-BMT in most of the patients. In patients whose cells had ceased to produce IL-2 spontaneously or never produced this cytokine, neither coculture with host cells nor stimulation with OKT3 antibody thereafter induced IL-2 release through the first year posttransplant. Proliferative responses to exogenous IL-2 after stimulation with OKT3 antibody remained abnormal for up to 6 months post-SBA-E-BMT, unlike the responses of PBMC from recipients of conventional BM, which responded normally by 1 month post-BMT. However, the upregulation of IL- 2 receptor expression by exogenous IL-2 was found to be comparable to normal controls when tested as early as 3 weeks post-SBA-E-BMT. Therefore, the immunologic recovery of proliferative responses to IL-2 and the appearance of cells regulating in vivo activation of T cells appear to be more delayed in patients receiving T cell-depleted BMT. Similar to patients receiving conventional BMT, however, the ability to produce IL-2 after mitogenic stimulation remains depressed for up to 1 year after transplantation.


Blood ◽  
2006 ◽  
Vol 109 (9) ◽  
pp. 3873-3880 ◽  
Author(s):  
Lesley White ◽  
Subramaniam Krishnan ◽  
Natasa Strbo ◽  
Huanliang Liu ◽  
Michael A. Kolber ◽  
...  

Abstract An urgent need exists to devise strategies to augment antiviral immune responses in patients with HIV who are virologically well controlled and immunologically stable on highly active antiretroviral therapy (HAART). The objective of this study was to compare the immunomodulatory effects of the cytokines interleukin (IL)–21 with IL-15 on CD8 T cells in patients with HIV RNA of less than 50 copies/mL and CD4 counts greater than 200 cells/mm.3 Patient CD8 T cells displayed skewed maturation and decreased perforin expression compared with healthy controls. Culture of freshly isolated patient peripheral-blood mononuclear cells (PBMCs) for 5 hours to 5 days with IL-21 resulted in up-regulation of perforin in CD8 T cells, including memory and effector subsets and virus-specific T cells. IL-21 did not induce T-cell activation or proliferation, nor did it augment T-cell receptor (TCR)–induced degranulation. Treatment of patient PBMCs with IL-15 resulted in induction of perforin in association with lymphocyte proliferation and augmentation of TCR-induced degranulation. Patient CD8 T cells were more responsive to cytokine effects than the cells of healthy volunteers. We conclude that CD8 T cells of patients with HIV can be modulated by IL-21 to increase perforin expression without undergoing overt cellular activation. IL-21 could potentially be useful for its perforin-enhancing properties in anti-HIV immunotherapy.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2545-2545
Author(s):  
Kyoichi Kaira ◽  
Ou Yamaguchi ◽  
Kenichi Yoshimura ◽  
Atsuto Mouri ◽  
Ayako Shiono ◽  
...  

2545 Background: Patients treated with programmed cell death 1 (PD-1)-blockade therapy fall into 3 distinct subgroups: non-responders presenting early disease progression, long survivors who achieve durable disease control, and the remaining short-term responders. We reported that the prediction formula comprised of the percentages of CD62L-downregulated (CD62Llow) and CD25+FOXP3+CD4+T cells in the peripheral blood predicted non-responders of non-small cell lung cancer patients (n = 50) scheduled to receive anti-PD-1-antibody (nivolumab) therapy in the 2017 ASCO meeting. In this study, we included 171 patients with NSCLC who were scheduled for nivolumab treatment after obtaining written informed consent. Peripheral blood mononuclear cells (PBMC) were examined before and after Nivolumab therapy up to 2 years to investigate the differences between long survivors and short-term responders. Methods: The patients received Nivolumab at a dose of 3 mg per kilogram of body weight every 2 weeks. Tumor response was assessed with the use of the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, at week 8 and every 8 weeks thereafter. PBMCs were analyzed with a 18-color microfluorometer, LSR Fortessa and a masscytometer, CyTOF. Results: The responder-type patient group whose prediction formula values were greater than 192 showed significantly longer PFS ( P< 0.0001) and OS ( P< 0.0001). The long survivors who consisted of tail plateau of PFS exhibited significantly more CD62LlowCD4+T cells than the short-term responders as pre-existing immunity. The remaining responders kept significantly higher percentages of CD62LlowCD4+T cells ( P= 0.0088) and prediction formula values ( P= 0.017) than the patients with acquired resistance. Conclusions: The pre-existing CD4+T cell balance between primed effector and regulatory T cells correlated with anti-PD-1 therapy response. Further, CD62Llowcell-dominant CD4+T cell immunity was required to maintain durable antitumor reactivity induced by anti-PD-1 antibody therapy. These results have important clinical implication, as they support anti-PD-1 therapy provision to all potentially responding patients and pave the way for new treatment strategies for patients with distinct CD4+T cell immune statuses. Clinical trial information: UMIN000020719.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 1963-1969 ◽  
Author(s):  
Daniel G. Kavanagh ◽  
Daniel E. Kaufmann ◽  
Sherzana Sunderji ◽  
Nicole Frahm ◽  
Sylvie Le Gall ◽  
...  

Transfection with synthetic mRNA is a safe and efficient method of delivering antigens to dendritic cells for immunotherapy. Targeting antigens to the lysosome can sometimes enhance the CD4+ T-cell response. We transfected antigen-presenting cells (APCs) with mRNA encoding Gag-p24 and cytoplasmic, lysosomal, and secreted forms of Nef. Antigen-specific cytotoxic T cells were able to lyse the majority of transfected targets, indicating that transfection was efficient. Transfection of APCs with a Nef construct bearing lysosomal targeting signals produced rapid and prolonged antigen presentation to CD4+ and CD8+ T cells. Polyclonal CD4+ and CD8+ T-cell lines recognizing multiple distinct epitopes were expanded by coculture of transfected dendritic cells with peripheral blood mononuclear cells from viremic and aviremic HIV-infected subjects. Importantly, lysosome-targeted antigen drove a significantly greater expansion of Nef-specific CD4+ T cells than cytoplasmic antigen. The frequency of recognition of CD8 but not CD4 epitopes by mRNA-expanded T cells was inversely proportional to sequence entropy and was similar to ex vivo responses from a large chronic cohort. Thus human dendritic cells transfected with mRNA encoding lysosome-targeted HIV antigen can expand a broad, polyclonal repertoire of antiviral T cells, offering a promising approach to HIV immunotherapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5689-5689
Author(s):  
Ming NI ◽  
Lei Wang ◽  
Christian Kleist ◽  
Peter Terness ◽  
Gerhard Opelz ◽  
...  

Abstract Introduction: Quality assessment in terms of product specificity and product potency is obligatory and strictly required by EMA and FDA to provide a platform for analysis of product comparability, stability and compatibility, and for clinical development to help predict product clinical efficacy. Mitomycin-treated donor peripheral blood mononuclear cells (MICs) could induce donor-specific tolerance via generation of recipient-derived tolerogenic dendritic cells (tDCs). To evaluate the immunomodulating capacity of the MIC product, we assessed the phenotype of tDCs, the immunosuppressive capacity of tDCs on allo-reactive CD4+ and CD8+ T cells as well as on CMV-specific CD8+ T cells. Methods: For standardization of the potency assay, third-party PBMCs positive for HLA-A2 and anti-CMV IgG were used. Immature DCs (iDCs) were generated 3 days before MIC production. MICs were generated under Good Manufacturing Practice (GMP) conditions. Each batch of MICs was introduced to iDCs at different ratios (1:0, 1:1, 1:10, 1:20) for a two-hour interaction followed by adding a DC maturation cocktail for overnight co-culture. Thereafter tDCs were purified by magnetic negative separation. The morphology of tDCs was observed by microscopy. The expression of HLA-DR, CD80, CD83, CD86 and CD103 was analyzed by flow cytometry. The inhibitory capacity on allo-reactive T cells and virus specific T cells was determined by mixed lymphocyte reaction (MLR) assay, by ELISpot assay and by Tetramer staining assay after one week of expansion in mixed lymphocyte peptide culture (MLPC). Results: In light microscopy (magnification: x 40), tDCs showed a relative smooth membrane surface. While the conventional mDCs were significantly larger in size with rough surface, richer ruffles on the cell membrane, and bigger, longer protrusions or pseudopodia. MIC products could inhibit the expression of costimulatory molecules on tDCs with an inhibition of 41% of CD80, 27% of CD83 and 23% of CD86. In parallel, the inhibitory marker CD103 was up-regulated about 65% on tDCs. Functionally, both tDCs and MICs could inhibit the IFN-γ secretion by CMV-specific CD8+ T cells, respectively. Moreover, the proliferation of allo-reactive T cells and CMV-specific T cells could be inhibited by tDCs and MICs. Conclusions: In summary, the potency assays, including the measurement of physicochemical parameters, the morphology and marker expression of tDCs, as well as the biologic characterization, the functionally immunosuppressive capacity of tDCs, comprise valuable parameters for the evaluation of clinically used advanced therapeutic cellular products. Disclosures No relevant conflicts of interest to declare.


1998 ◽  
Vol 5 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Phillip Ruiz ◽  
Natalia Zacharievich ◽  
Mark Shenkin

ABSTRACT Dipeptidyl peptidase IV (DPP IV), also identified as the glycoprotein CD26, is a transmembrane 110- to 120-kDa serine aminopeptidase involved in immune responses by influencing T-cell costimulation and by cleaving cytokines. Additionally, CD26 is a nonintegrin receptor that contains a binding site for extracellular matrix and other molecules. In order to further define the expression and functional activity of this membrane exopeptidase in human T cells, we developed a nondisruptive, four-color cytofluorogenic assay that utilizes three separate antibodies to cell-surface molecules (e.g., CD4/CD8/CD26 and CD19/CD56/CD26) along with a rhodamine 110-conjugated dipeptide substrate that allows the measurement of DPP IV activity in phenotypically defined cells. We found normal human thymi to have notable differences in time-dependent DPP IV activity among the thymocyte subsets defined by their CD4/CD8 phenotype, with CD4−/CD8− thymocytes containing less DPP IV activity than cells expressing CD4 and/or CD8 (i.e., maturing). CD26 positivity was moderately intense in thymocytes and tended to identify cells with higher DPP IV activity. The four-color technique was also used to examine mature peripheral blood lymphocytes, along with an assortment of leukemias and transformed T-cell lines. These experiments revealed that while DPP IV was consistently evident in normal T cells, neoplastic T cells could vary in their expression patterns. Furthermore, the presence (or intensity) of surface CD26 in some abnormal T cells and certain normal peripheral blood mononuclear cells was separable from the level of DPP IV measured intracellularly. Our results established that multicolor cytofluorographic analysis can be a practical means to measure DPP IV activity in various human cell populations. Furthermore, we found that DPP IV activity could vary in T cells according to their differentiation status and that under certain circumstances surface CD26 expression can be disassociated from the level of measured enzyme (i.e., DPP IV) activity.


Sign in / Sign up

Export Citation Format

Share Document