scholarly journals Genome-wide identification and characterization of lectin receptor-like kinase gene family in cucumber and expression profiling analysis under different treatments

2020 ◽  
Author(s):  
Duo Lv ◽  
Gang Wang ◽  
Liang-Rong Xiong ◽  
Jing-Xian Sun ◽  
Yue Chen ◽  
...  

Abstract Background Lectin receptor-like kinases (LecRLKs) are a class of membrane proteins found in plants that are involved in diverse functions, including plant development and stress responses. Although LecRLK families have been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in cucumber ( Cucumis sativus L.). Results In this study, 46 putative LecRLK genes were identified in cucumber genome, including 23 G-type, 22 L-type and 1 C-type LecRLK genes. They unequally distributed on all 7 chromosomes with a clustering trendency. Most of the genes in the cucumber LecRLK ( Cs ecRLK ) gene family lacked introns. In addition, there were many regulatory elements associated with phytohormone and stress on these genes’ promoters. Transcriptome data demonstrated that distinct expression patterns of CsLecRLK genes in various tissues. Furthermore, we found that each member of the CsLecRLK family had its own unique expression pattern under hormone and stress treatment by the quantitative real time PCR (qRT-PCR) analysis. Conclusion This study provides a better understanding of the evolution and function of LecRLK gene family in cucumber, and opens the possibility to explore the roles that LecRLK s might play in the life cycle of cucumber.

Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1032 ◽  
Author(s):  
Duo Lv ◽  
Gang Wang ◽  
Liang-Rong Xiong ◽  
Jing-Xian Sun ◽  
Yue Chen ◽  
...  

Lectin receptor-like kinases (LecRLKs) are a class of membrane proteins found in plants that are involved in diverse functions, including plant development and stress responses. Although LecRLK families have been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in cucumber (Cucumis sativus L.). In this study, 46 putative LecRLK genes were identified in the cucumber genome, including 23 G-type and 22 L-type, and one C-type LecRLK gene. They were unequally distributed on all seven chromosomes, with a clustering tendency. Most of the genes in the cucumber LecRLK (CsLecRLK) gene family lacked introns. In addition, there were many regulatory elements associated with phytohormones and stress on these genes’ promoters. Transcriptome data demonstrated distinct expression patterns of CsLecRLK genes in various tissues. Furthermore, we found that each member of the CsLecRLK family had its own unique expression pattern under hormone and stress treatment by the quantitative real-time PCR (qRT-PCR) analysis. This study provides a better understanding of the character and function of the LecRLK gene family in cucumber and opens up the possibility to exploring the roles that LecRLKs might play in the life cycle of cucumber.


2020 ◽  
Author(s):  
Duo Lv ◽  
Gang Wang ◽  
Yue Chen ◽  
Liang-Rong Xiong ◽  
Jing-Xian Sun ◽  
...  

Abstract Background Lectin receptor-like kinases (LecRLKs) are a class of membrane proteins found in plants that are involved in diverse functions, including plant development and stress responses. Although LecRLK families have been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in cucumber ( Cucumis sativus L.).Results In this study, 46 putative LecRLK genes were identified in cucumber genome, including 23 G-type, 22 L-type and 1 C-type LecRLK genes. They unequally distributed on all 7 chromosomes with a clustering trendency. Most of the genes in the cucumber LecRLK (Cs LecRLK) gene family lacked introns. In addition, there were many regulatory elements associated with phytohormone and stress on these genes’ promoters. Transcriptome data demonstrated that distinct expression patterns of CsLecRLK genes in various tissues. Furthermore, we found that each member of the CsLecRLK family had its own unique expression pattern under hormone and stress treatment by the quantitative real time PCR (qRT-PCR) analysis.Conclusion This study provides a better understanding of the evolution and function of LecRLK gene family in cucumber, and opens the possibility to explore the roles that LecRLK s might play in the life cycle of cucumber.


2020 ◽  
Author(s):  
Duo Lv ◽  
Gang Wang ◽  
Liang-Rong Xiong ◽  
Jing-Xian Sun ◽  
Yue Chen ◽  
...  

Abstract Background: Lectin receptor-like kinases (LecRLKs) are a class of membrane proteins found in plants that are involved in diverse functions, including plant development and stress responses. Although LecRLK families have been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in cucumber (Cucumis sativus L.). Results: In this study, 46 putative LecRLK genes were identified in cucumber genome, including 23 G-type, 22 L-type and 1 C-type LecRLK genes. They unequally distributed on all 7 chromosomes with a clustering trendency. Most of the genes in the cucumber LecRLK (CsLecRLK) gene family lacked introns. In addition, there were many regulatory elements associated with phytohormone and stress on these genes’ promoters. Transcriptome data demonstrated that distinct expression patterns of CsLecRLK genes in various tissues. Furthermore, we found that each member of the CsLecRLK family had its own unique expression pattern under hormone and stress treatment by the quantitative real time PCR (qRT-PCR) analysis.Conclusion: This study provides a better understanding of the evolution and function of LecRLK gene family in cucumber, and opens the possibility to explore the roles that LecRLKs might play in the life cycle of cucumber.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7509 ◽  
Author(s):  
Yongbin Wang ◽  
Zhenfeng Jiang ◽  
Zhenxiang Li ◽  
Yuanling Zhao ◽  
Weiwei Tan ◽  
...  

Background VQ proteins, the plant-specific transcription factors, are involved in plant development and multiple stresses; however, only few articles systematic reported the VQ genes in soybean. Methods In total, we identified 75 GmVQ genes, which were classified into 7 groups (I-VII). Conserved domain analysis indicated that VQ gene family members all contain the VQ domains. VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. Promoter analysis revealed that cis-elements related to stress responses, phytohormone responses and controlling physical as well as reproductive growth. Based on the RNA-seq and qRT-PCR analysis, GmVQ genes were showed expressing in nine tissues, suggesting their putative function in many aspects of plant growth and development as well as response to stress in Glycine max. Results This study aims to understand the roles of VQ genes in various development processes and their expression patterns in responses to stimuli. Our results provide basic information in identification and classification of GmVQ genes. Further experimental analysis will allows us to know the functions of GmVQs participation in plant growth and stress responses.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1156
Author(s):  
Xiaojun Li ◽  
Xiaohong Lu ◽  
Mengshuang Liu ◽  
Chenggang Xiang ◽  
Wenqian Liu ◽  
...  

Glutamine synthetase (GS; EC 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is the key enzyme responsible for the primary assimilation and reassimilation of nitrogen (N) in higher plants. There are two main isoforms of GS in higher plants, classified as cytosolic GS (GS1) and chloroplastic GS (GS2) by their size and subcellular localization. In order to improve the stress tolerance, quality, and yield of cucurbit crops such as cucumbers (Csa, Cucumis sativus L.), pumpkins (Cmo, Cucurbita moschata var. Rifu) are often used as rootstocks. Here, the GS family of the two species were comprehensively analyzed using bioinformatics in terms of aspects of the phylogenic tree, gene structure, chromosome location, subcellular localization, and evolutionary and expression patterns. Seven and four GS gene family members were screened in pumpkin and cucumber, respectively. GS family genes were divided into three groups (one for GS2 and two for GS1) according to their homology and phylogenetic relationships with other species. The analysis of gene ontology annotation of GS family genes, promoter regulatory elements, and tissue-specific expression patterns indicates the potential different biological roles of GS isoforms in Cucurbitaceae. In particular, we have identified a potentially available gene (GS1: CmoCh08G004920) from pumpkin that is relatively highly expressed and tissue-specifically expressed. RT-PCR analysis showed that most CmoGSs are induced by low temperature, and long-term (day 2 to day 9) cold stress has a more obvious effect on the RNA abundance of CmoGS. Our work presents the structure and expression patterns of all candidate members of the pumpkin and cucumber GS gene family, and to the best of our knowledge, this is the first time such work has been presented. It is worth focusing on the candidate genes with strong capacity for improving pumpkin rootstock breeding in order to increase nitrogen-use efficiency in cold conditions, as well as rootstock-scion communication.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kewei Cai ◽  
Huixin Liu ◽  
Song Chen ◽  
Yi Liu ◽  
Xiyang Zhao ◽  
...  

Abstract Background Class III peroxidases (POD) proteins are widely present in the plant kingdom that are involved in a broad range of physiological processes including stress responses and lignin polymerization throughout the plant life cycle. At present, POD genes have been studied in Arabidopsis, rice, poplar, maize and Chinese pear, but there are no reports on the identification and function of POD gene family in Betula pendula. Results We identified 90 nonredundant POD genes in Betula pendula. (designated BpPODs). According to phylogenetic relationships, these POD genes were classified into 12 groups. The BpPODs are distributed in different numbers on the 14 chromosomes, and some BpPODs were located sequentially in tandem on chromosomes. In addition, we analyzed the conserved domains of BpPOD proteins and found that they contain highly conserved motifs. We also investigated their expression patterns in different tissues, the results showed that some BpPODs might play an important role in xylem, leaf, root and flower. Furthermore, under low temperature conditions, some BpPODs showed different expression patterns at different times. Conclusions The research on the structure and function of the POD genes in Betula pendula plays a very important role in understanding the growth and development process and the molecular mechanism of stress resistance. These results lay the theoretical foundation for the genetic improvement of Betula pendula.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

AbstractMultidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 250 ◽  
Author(s):  
Ruimei Li ◽  
Shuai Yuan ◽  
Yingdui He ◽  
Jie Fan ◽  
Yangjiao Zhou ◽  
...  

Galactinol synthases (GolSs) are the key enzymes that participate in raffinose family oligosaccharides (RFO) biosynthesis, which perform a big role in modulating plant growth and response to biotic or abiotic stresses. To date, no systematic study of this gene family has been conducted in cassava (Manihot esculenta Crantz). Here, eight MeGolS genes are isolated from the cassava genome. Based on phylogenetic background, the MeGolSs are clustered into four groups. Through predicting the cis-elements in their promoters, it was discovered that all MeGolS members act as hormone-, stress-, and tissue-specific related elements to different degrees. MeGolS genes exhibit incongruous expression patterns in various tissues, indicating that different MeGolS proteins might have diverse functions. MeGolS1 and MeGolS3–6 are highly expressed in leaves and midveins. MeGolS3–6 are highly expressed in fibrous roots. Quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis indicates that several MeGolSs, including MeGolS1, 2, 5, 6, and 7, are induced by abiotic stresses. microRNA prediction analysis indicates that several abiotic stress-related miRNAs target the MeGolS genes, such as mes-miR156, 159, and 169, which also respond to abiotic stresses. The current study is the first systematic research of GolS genes in cassava, and the results of this study provide a basis for further exploration the functional mechanism of GolS genes in cassava.


2019 ◽  
Author(s):  
Yongbin Wang ◽  
Zhenfeng Jiang ◽  
Zhenxiang Li ◽  
Yuanling Zhao ◽  
Weiwei Tan ◽  
...  

Background. VQ proteins, the plant-specific transcription factors, are involved in the regulation of plant growth, development, and stress responses; however, few articles systematic reported VQ genes in the soybean. Methods. In total, we identified 75 GmVQ genes, which were classified into 7 groups (Ⅰ-Ⅶ). Conserved domain analysis indicated that VQ gene family members all contained the VQ domains. The VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. Promoter analysis revealed cis-elements related to stress responses, phytohormone responses and controlling physical and reproductive growth. Based on the RNA-seq and qRT-PCR analysis, GmVQ genes were expressed in nine tissues suggested their putative function in many aspects of plant growth and development, and response to stresses in Glycine max. Results. The present study provided basic information for further analysis of the biological functions of GmVQ proteins in various development processes.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3955 ◽  
Author(s):  
Yiling Niu ◽  
Tingting Zhao ◽  
Xiangyang Xu ◽  
Jingfu Li

Solanum lycopersicum, belonging to Solanaceae, is one of the commonly used model plants. The GRAS genes are transcriptional regulators, which play a significant role in plant growth and development, and the functions of several GRAS genes have been recognized, such as, axillary shoot meristem formation, radial root patterning, phytohormones (gibberellins) signal transduction, light signaling, and abiotic/biotic stress; however, only a few of these were identified and functionally characterized. In this study, a gene family was analyzed comprehensively with respect to phylogeny, gene structure, chromosomal localization, and expression pattern; the 54 GRAS members were screened from tomato by bioinformatics for the first time. The GRAS genes among tomato, Arabidopsis, rice, and grapevine were rebuilt to form a phylogenomic tree, which was divided into ten groups according to the previous classification of Arabidopsis and rice. A multiple sequence alignment exhibited the typical GRAS domain and conserved motifs similar to other gene families. Both the segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in tomato; the expression patterns across a variety of tissues and biotic conditions revealed potentially different functions of GRAS genes in tomato development and stress responses. Altogether, this study provides valuable information and robust candidate genes for future functional analysis for improving the resistance of tomato growth.


Sign in / Sign up

Export Citation Format

Share Document