scholarly journals Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/ NLRP3 signaling in rat

2020 ◽  
Author(s):  
Hetao Bian ◽  
Gaohua Wang ◽  
Junjie Huang ◽  
Liang Liang ◽  
Yage Zheng ◽  
...  

Abstract Background: Recently, depression has been identified as prevalent and severe mental disorder. However, the mechanisms underlying the depression risk remain elusive. The neuroinflammation and NLRP3 inflammasome activation are known to be involved in the pathology of depression. Dihydrolipoic acid (DHLA) has been reported as a strong antioxidant and exhibits anti-inflammatory properties in various diseases, albeit the direct relevance between DHLA and depression is yet unknown. The present study aimed to investigate the anti-depressant effects and potential mechanism of DHLA in the Lipopolysaccharide (LPS)-induced depression animal model. Methods: Adult male Sprague–Dawley rats were utilized. LPS and DHLA were injected intraperitoneally every 2 days and daily, respectively. Fluoxetine(Flu) was injected intraperitoneally daily. PD98059, an inhibitor of ERK, was injected intraperitoneally one hour before DHLA injection daily. Small interfering ribonucleic acid (siRNA) for nuclear factor erythroid 2-like (Nrf2) was injected into the bilateral hippocampus 14 days before the DHLA injection. Depression-like behavior tests were performed. Western blot and immunofluorescence staining detected the ERK/Nrf2/HO-1/ROS/NLRP3 pathway-related proteins. Results: The DHLA and fluoxetine treatment exerted anti-depressant effects in LPS-induced depression rats. The DHLA treatment increased the expression of ERK, Nrf2, and HO-1 but decreased the ROS generation levels and reduced the expression of NLRP3, caspase-1, and IL-1b in LPS-induced depression rats. PD98059 abolished the effects of DHLA on anti-depression as well as the levels of Nrf2 and HO-1 proteins. Similarly, Nrf2 siRNA reversed the anti-depressant effect of DHLA administration via the decreased expression of HO-1. Conclusions: These findings suggested that DHLA exerted anti-depressant-like effects via ERK/Nrf2/HO-1/ROS/NLRP3 pathway in LPS-induced depression rats. Thus, DHLA may serve as a potential therapeutic strategy for depression.

2020 ◽  
Author(s):  
Hetao Bian ◽  
Gaohua Wang ◽  
Junjie Huang ◽  
Liang Liang ◽  
Yage Zheng ◽  
...  

Abstract Background: Recently, depression has been identified as prevalent and severe mental disorder. However, the mechanisms underlying the depression risk remain elusive. The neuroinflammation and NLRP3 inflammasome activation are known to be involved in the pathology of depression. Dihydrolipoic acid (DHLA) has been reported as a strong antioxidant and exhibits anti-inflammatory properties in various diseases, albeit the direct relevance between DHLA and depression is yet unknown. The present study aimed to investigate the preventive effect and potential mechanism of DHLA in the Lipopolysaccharide (LPS)-induced sickness behavior in rats. Methods: Adult male Sprague–Dawley rats were utilized. LPS and DHLA were injected intraperitoneally every 2 days and daily, respectively. Fluoxetine (Flu) was injected intraperitoneally daily. PD98059, an inhibitor of ERK, was injected intraperitoneally one hour before DHLA injection daily. Small interfering ribonucleic acid (siRNA) for nuclear factor erythroid 2-like (Nrf2) was injected into the bilateral hippocampus 14 days before the DHLA injection. Depression-like behavior tests were performed. Western blot and immunofluorescence staining detected the ERK/Nrf2/HO-1/ROS/NLRP3 pathway-related proteins.Results: The DHLA and fluoxetine treatment exerted preventive effects in LPS-induced sickness behavior rats. The DHLA treatment increased the expression of ERK, Nrf2, and HO-1 but decreased the ROS generation levels and reduced the expression of NLRP3, caspase-1, and IL-1b in LPS-induced sickness behavior rats. PD98059 abolished the effects of DHLA on preventive effect as well as the levels of Nrf2 and HO-1 proteins. Similarly, Nrf2 siRNA reversed the preventive effect of DHLA administration via the decreased expression of HO-1.Conclusions: These findings suggested that DHLA exerted a preventive effect via ERK/Nrf2/HO-1/ROS/NLRP3 pathway in LPS-induced sickness behavior rats. Thus, DHLA may serve as a potential therapeutic strategy for depression.


2020 ◽  
Author(s):  
Hetao Bian ◽  
Gaohua Wang ◽  
Junjie Huang ◽  
Liang Liang ◽  
Yage Zheng ◽  
...  

Abstract Background: Recently, depression has been identified as prevalent and severe mental disorder. However, the mechanisms underlying the depression risk remain elusive. The neuroinflammation and NLRP3 inflammasome activation are known to be involved in the pathology of depression. Dihydrolipoic acid (DHLA) has been reported as a strong antioxidant and exhibits anti-inflammatory properties in various diseases, albeit the direct relevance between DHLA and depression is yet unknown. The present study aimed to investigate the preventive effect and potential mechanism of DHLA in the Lipopolysaccharide (LPS)-induced sickness behaviors in rats. Methods: Adult male Sprague–Dawley rats were utilized. LPS and DHLA were injected intraperitoneally every 2 days and daily, respectively. Fluoxetine (Flu) was injected intraperitoneally daily. PD98059, an inhibitor of ERK, was injected intraperitoneally one hour before DHLA injection daily. Small interfering ribonucleic acid (siRNA) for nuclear factor erythroid 2-like (Nrf2) was injected into the bilateral hippocampus 14 days before the DHLA injection. Depression-like behavior tests were performed. Western blot and immunofluorescence staining detected the ERK/Nrf2/HO-1/ROS/NLRP3 pathway-related proteins. Results: The DHLA and fluoxetine treatment exerted preventive effects in LPS-induced sickness behaviors rats. The DHLA treatment increased the expression of ERK, Nrf2, and HO-1 but decreased the ROS generation levels and reduced the expression of NLRP3, caspase-1, and IL-1b in LPS-induced sickness behaviors rats. PD98059 abolished the effects of DHLA on preventive effect as well as the levels of Nrf2 and HO-1 proteins. Similarly, Nrf2 siRNA reversed the preventive effect of DHLA administration via the decreased expression of HO-1. Conclusions: These findings suggested that DHLA exerted a preventive effect via ERK/Nrf2/HO-1/ROS/NLRP3 pathway in LPS-induced sickness behaviors rats. Thus, DHLA may serve as a potential therapeutic strategy for depression.


2021 ◽  
Vol 22 (12) ◽  
pp. 6471
Author(s):  
Ramona D’Amico ◽  
Roberta Fusco ◽  
Rosalba Siracusa ◽  
Daniela Impellizzeri ◽  
Alessio Filippo Peritore ◽  
...  

Fibromyalgia is a chronic condition characterized by persistent widespread pain that significantly reduces quality of life in patients. The purinergic P2X7 receptor (P2X7R) seems to be involved in different pain states and neuroinflammation. The purpose of this study is to investigate the positive effects of P2X7R inhibition by the antagonist Brilliant Blue G (BBG) in a rat model of reserpine-induced fibromyalgia. Sprague–Dawley male rats were injected with 1 mg/kg of reserpine for three consecutive days. Later, animals were administered BBG (50 mg/kg) intraperitoneally for seven days. Reserpine injections induced a significant increase in pain pro-inflammatory mediators as well as a significant increase in neuroinflammation. Chronic pain, in turn, led to depressive-like symptoms and reduced neurogenesis. Blockage of P2X7R by BBG administrations is able to attenuate the behavioral deficits, pain mediators and microglial activation induced by reserpine injection. Additionally, BBG prevents NLRP3 inflammasome activation and consequently the release of active interleukin (IL)-1 and IL-18, involved in the activation of nociceptors. In conclusion, these results suggest that inhibition of P2X7R should be further investigated to develop a potential approach for the management of fibromyalgia.


Author(s):  
Mei-yue Song ◽  
Jia-xin Wang ◽  
You-liang Sun ◽  
Zhi-fa Han ◽  
Yi-tian Zhou ◽  
...  

AbstractSilicosis caused by inhalation of silica particles leads to more than ten thousand new occupational exposure-related deaths yearly. Exacerbating this issue, there are currently few drugs reported to effectively treat silicosis. Tetrandrine is the only drug approved for silicosis treatment in China, and despite more than decades of use, its efficacy and mechanisms of action remain largely unknown. Here, in this study, we established silicosis mouse models to investigate the effectiveness of tetrandrine of early and late therapeutic administration. To this end, we used multiple cardiopulmonary function test, as well as markers for inflammation and fibrosis. Moreover, using single cell RNA sequencing and transcriptomics of lung tissue and quantitative microarray analysis of serum from silicosis and control mice, our results provide a novel description of the target pathways for tetrandrine. Specifically, we found that tetrandrine attenuated silicosis by inhibiting both the canonical and non-canonical NLRP3 inflammasome pathways in lung macrophages. Taken together, our work showed that tetrandrine yielded promising results against silicosis-associated inflammation and fibrosis and further lied the groundwork for understanding its molecular targets. Our results also facilitated the wider adoption and development of tetrandirne, potentially accelerating a globally accepted therapeutic strategy for silicosis.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
You-Cheng Hseu ◽  
Yu-Fang Tseng ◽  
Sudhir Pandey ◽  
Sirjana Shrestha ◽  
Kai-Yuan Lin ◽  
...  

Coenzyme Q (CoQ) analogs with a variable number of isoprenoid units have exhibited as anti-inflammatory as well as antioxidant molecules. Using novel quinone derivative CoQ0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, zero side chain isoprenoid), we studied its molecular activities against LPS/ATP-induced inflammation and redox imbalance in murine RAW264.7 macrophages. CoQ0’s non- or subcytotoxic concentration suppressed the NLRP3 inflammasome and procaspase-1 activation, followed by downregulation of IL1β expression in LPS/ATP-stimulated RAW264.7 macrophages. Similarly, treatment of CoQ0 led to LC3-I/II accumulation and p62/SQSTM1 activation. An increase in the Beclin-1/Bcl-2 ratio and a decrease in the expression of phosphorylated PI3K/AKT, p70 S6 kinase, and mTOR showed that autophagy was activated. Besides, CoQ0 increased Parkin protein to recruit damaged mitochondria and induced mitophagy in LPS/ATP-stimulated RAW264.7 macrophages. CoQ0 inhibited LPS/ATP-stimulated ROS generation in RAW264.7 macrophages. Notably, when LPS/ATP-stimulated RAW264.7 macrophages were treated with CoQ0, Mito-TEMPO (a mitochondrial ROS inhibitor), or N-acetylcysteine (NAC, a ROS inhibitor), there was a significant reduction of LPS/ATP-stimulated NLRP3 inflammasome activation and IL1β expression. Interestingly, treatment with CoQ0 or Mito-TEMPO, but not NAC, significantly increased LPS/ATP-induced LC3-II accumulation indicating that mitophagy plays a key role in the regulation of CoQ0-inhibited NLRP3 inflammasome activation. Nrf2 knockdown significantly decreased IL1β expression in LPS/ATP-stimulated RAW264.7 macrophages suggesting that CoQ0 inhibited ROS-mediated NLRP3 inflammasome activation and IL1β expression was suppressed due to the Nrf2 activation. Hence, this study showed that CoQ0 might be a promising candidate for the therapeutics of inflammatory disorders due to its effective anti-inflammatory as well as antioxidant properties.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Zufeng Ding ◽  
Sadip Pant ◽  
Abhishek Deshmukh ◽  
Jawahar L Mehta

Objective: This study tested the hypothesis that mitochondrial DNA damage could trigger NLRP3 inflammasome activation during inflammation, and LOX-1 may play a critical role in this process. Methods and Results: We performed studies in cultured human THP1 macrophages exposed to ox-LDL or LPS,which are often used as inflammation stimuli in vitro . We examined and confirmed the increase in LOX-1 expression when cells were treated with ox-LDL or LPS. Parallel groups of cells were treated with LOX-1 Ab to bind LOX-1. In accordance with our previous studies in endothelial cells and smooth muscle cells, LOX-1 Ab markedly reduced ox-LDL- as well as LPS-stimulated LOX-1 expression. To assess mitochondrial ROS generation, MitoSOX™ Red mitochondrial superoxide indicator was used. Both fluorescence staining and flow cytometry analysis showed that LPS induced (more than ox-LDL) mitochondrial ROS generation. Pretreatment with LOX-1 Ab significantly attenuated mitochondrial ROS generation in response to ox-LDL or LPS. Then we observed mtDNA damage in THP1 cells exposed to ox-LDL or LPS. Importantly, pretreatment with LOX-1 Ab protected mtDNA from damage in response to both stimuli. This was also confirmed by q-PCR (mtDNA/nDNA ratio) analysis. Further, ox-LDL or LPS induced the expression of phos-NF-kB p65, caspase-1 p10 and p20, and cleaved proteins IL-1β and IL-18. Of note, NLRP3 inflammasome was activated in response to ox-LDL or LPS in a similar manner. Pretreatment of cells with LOX-1 Ab treatment blocked or significantly attenuated these inflammatory responses. Conclusions: These observations based on in vitro observations indicate that LOX-1 via ROS generation plays a key role in mtDNA damage which then leads to NLRP3 inflammasome activation during inflammation.


Rheumatology ◽  
2020 ◽  
Author(s):  
Di Liu ◽  
Yizhi Xiao ◽  
Bin Zhou ◽  
Siming Gao ◽  
Liya Li ◽  
...  

Abstract Objectives Muscle cell necrosis is the most common pathological manifestation of idiopathic inflammatory myopathies. Evidence suggests that glycolysis might participate in it. However, the mechanism is unclear. This study aimed to determine the role of glycolysis in the muscle damage that occurs in DM/PM. Methods Mass spectrometry was performed on muscle lesions from DM/PM and control subjects. The expression levels of pyruvate kinase isozyme M2 (PKM2), the nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis-related genes in muscle tissues or plasma were determined by real-time PCR, western blot analysis, IF and ELISA. In addition, IFNγ was used to stimulate myotubes, and the relationships among PMK2 expression, NLRP3 inflammasome activation and pyroptosis were investigated. Results Mass spectrometry and bioinformatics analysis suggested that multiple glycolysis processes, the NLRP3 inflammasome and programmed cell death pathway-related proteins were dysregulated in the muscle tissues of DM/PM. PKM2 and the NLRP3 inflammasome were upregulated and positively correlated in the muscle fibres of DM/PM. Moreover, the pyroptosis-related proteins were increased in muscle tissues of DM/PM and were further increased in PM. The levels of PKM2 in muscle tissues and IL-1β in plasma were high in patients with anti-signal recognition particle autoantibody expression. The pharmacological inhibition of PKM2 in IFNγ-stimulated myotubes attenuated NLRP3 inflammasome activation and subsequently inhibited pyroptosis. Conclusion Our study revealed upregulated glycolysis in the lesioned muscle tissues of DM/PM, which activated the NLRP3 inflammasome and leaded to pyroptosis in muscle cells. The levels of PKM2 and IL-1β were high in patients with anti-signal recognition particle autoantibody expression. These proteins might be used as new biomarkers for muscle damage.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3795
Author(s):  
Jihye Bang ◽  
Won Kyung Jeon

Mumefural (MF), a bioactive component of the processed fruit of Prunus mume Sieb. et Zucc, is known to inhibit platelet aggregation induced by agonists in vitro. In this study, we investigated the anti-thrombotic effects of MF using a rat model of FeCl3-induced arterial thrombosis. Sprague–Dawley rats were intraperitoneally injected with MF (0.1, 1, or 10 mg/kg) 30 min before 35% FeCl3 treatment to measure the time to occlusion using a laser Doppler flowmeter and to assess the weight of the blood vessels containing thrombus. MF treatment significantly improved blood flow by inhibiting occlusion and thrombus formation. MF also prevented collagen fiber damage in injured vessels and inhibited the expression of the platelet activation-related proteins P-selectin and E-selectin. Moreover, MF significantly reduced the increased inflammatory signal of nuclear factor (NF)-κB, toll-like receptor 4 (TLR4), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in blood vessels. After administration, MF was detected in the plasma samples of rats with a bioavailability of 36.95%. Therefore, we suggest that MF may improve blood flow as a candidate component in dietary supplements for improving blood flow and preventing blood circulation disorders.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jian Zhang ◽  
Junjie Liu ◽  
Sheng Gao ◽  
Weili Lin ◽  
Pengrong Gao ◽  
...  

Qishen granules (QSG) are a famous formula with cardioprotective properties to heart failure (HF). The aim of this study was to investigate the underlying mechanism of QSG on apoptosis and fibrosis in the treatment of HF. HF model was induced by left anterior descending artery ligation on Sprague-Dawley rats. Transcriptome analysis was used to investigate the regulatory pathways of QSG on HF. Interestingly, downregulated genes of QSG were significantly enriched in Hippo pathway which plays a crucial role in regulating cell apoptosis and proliferation. We found that QSG inhibited the expressions of proapoptotic key proteins P-53 and fibrosis-related proteins TGF-β1, SMAD3, and CTGF. Further, we conducted research on the key proteins in the Hippo pathway upstream of CTGF and P-53. The results showed that MST1, P-MST1, P-LATS1, and RASSF1A that exert proapoptotic function were downregulated after QSG intervention. Similarly, P-YAP and P-TAZ, mediating self-degradation and apoptosis, were both observably decreased after QSG administration. Taken together, QSG are shown to be likely to exert cardioprotective effects by inhibiting the progression of apoptosis and fibrosis through Hippo pathway.


Sign in / Sign up

Export Citation Format

Share Document