Genome-Wide Identification and Functional Analysis of Chitinase Gene Family in Grape

2020 ◽  
Author(s):  
Ting Zheng ◽  
Kekun Zhang ◽  
Xudong Zhu ◽  
Songtao Jiu ◽  
Tianyu Dong ◽  
...  

Abstract Background: Chitinases, the important resistance-related proteins, are crucial hydrolytic enzymes, which attack fungal pathogens by catalyzing the fungal cell wall degradation. As a large gene family, the VvChis have not been systematically analyzed and effectively investigated in grape. Results: In this study, we identified 42 VvChis in grape by searching the conserved domains, and divided them into A, B, C, D and E groups according to pylogenetic relationships, gene structure and conserved domains analysis. Quantitative real-time PCR (qRT-PCR) and publicly microarray data analysis revealed distinct temporal and spatial expression patterns of VvChis in different tissues at various growth stages. The transcriptional level of most genes was high in the root of ‘Koyho’ and ‘Summer Black’. Combining cis-elements in the promoter, GO and KEGG analysis, and prediction of interaction proteins, we revealed the function of Chitinase. After the pathogen infecting the leaves and berries of grape, the expression levels of VvChis in A, B and E groups showed a significant upward trend, of which VvChi5, VvChi25, VvChi11 (leaf) and VvChi16 (fruit) were the most up-regulated. The interaction between Chi-17 and Metallothionein (MTL) was confirmed by yeast two-hybrid system and bimolecular fluorescence complementation (BiFC). In addition, VvChis in GH18 family were up-regulated under MeJA and ETH treatment, in particular to 500 mg·L -1 ETH、50 μmol·L -1 MeJA; The induction of VvChis by low temperature was more significant than that of high temperature; The expression of VvChis was positively correlated with the concentration of NaCl treatment. Conclusion: This study clarified the member composition and expression pattern of VvChi family in grape, initially explored the disease resistance function of VvChi, and analyzed the response of VvChis to hormones (MeJA and ETH) and environmental stress (temperature and NaCl) signals was analyzed, which laid a foundation for constructing the functional regulation network of VvChi in grapes.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Sang ◽  
Hui Liu ◽  
Bin Ma ◽  
Xianzhong Huang ◽  
Lu Zhuo ◽  
...  

Abstract Background In plants, 14-3-3 proteins, also called GENERAL REGULATORY FACTORs (GRFs), encoded by a large multigene family, are involved in protein–protein interactions and play crucial roles in various physiological processes. No genome-wide analysis of the GRF gene family has been performed in cotton, and their functions in flowering are largely unknown. Results In this study, 17, 17, 31, and 17 GRF genes were identified in Gossypium herbaceum, G. arboreum, G. hirsutum, and G. raimondii, respectively, by genome-wide analyses and were designated as GheGRFs, GaGRFs, GhGRFs, and GrGRFs, respectively. A phylogenetic analysis revealed that these proteins were divided into ε and non-ε groups. Gene structural, motif composition, synteny, and duplicated gene analyses of the identified GRF genes provided insights into the evolution of this family in cotton. GhGRF genes exhibited diverse expression patterns in different tissues. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhGRFs interacted with the cotton FLOWERING LOCUS T homologue GhFT in the cytoplasm and nucleus, while they interacted with the basic leucine zipper transcription factor GhFD only in the nucleus. Virus-induced gene silencing in G. hirsutum and transgenic studies in Arabidopsis demonstrated that GhGRF3/6/9/15 repressed flowering and that GhGRF14 promoted flowering. Conclusions Here, 82 GRF genes were identified in cotton, and their gene and protein features, classification, evolution, and expression patterns were comprehensively and systematically investigated. The GhGRF3/6/9/15 interacted with GhFT and GhFD to form florigen activation complexs that inhibited flowering. However, GhGRF14 interacted with GhFT and GhFD to form florigen activation complex that promoted flowering. The results provide a foundation for further studies on the regulatory mechanisms of flowering.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2010 ◽  
Vol 2 (2) ◽  
pp. 14-21 ◽  
Author(s):  
Shabir Hussain WANI

Plant diseases are caused by a variety of plant pathogens including fungi, and their management requires the use of techniques like transgenic technology, molecular biology, and genetics. There have been attempts to use gene technology as an alternative method to protect plants from microbial diseases, in addition to the development of novel agrochemicals and the conventional breeding of resistant cultivars. Various genes have been introduced into plants, and the enhanced resistance against fungi has been demonstrated. These include: genes that express proteins, peptides, or antimicrobial compounds that are directly toxic to pathogens or that reduce their growth in situ; gene products that directly inhibit pathogen virulence products or enhance plant structural defense genes, that directly or indirectly activate general plant defense responses; and resistance genes involved in the hypersensitive response and in the interactions with virulence factors. The introduction of the tabtoxin acetyltransferase gene, the stilbene synthase gene, the ribosome-inactivation protein gene and the glucose oxidase gene brought enhanced resistance in different plants. Genes encoding hydrolytic enzymes such as chitinase and glucanase, which can deteriorate fungal cell-wall components, are attractive candidates for this approach and are preferentially used for the production of fungal disease-resistant plants. In addition to this, RNA-mediated gene silencing is being tried as a reverse tool for gene targeting in plant diseases caused by fungal pathogens. In this review, different mechanisms of fungal disease resistance through biotechnological approaches are discussed and the recent advances in fungal disease management through transgenic approach are reviewed.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple ( Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members have been identified to play vital roles in flowering. However, little information was available about the 14-3-3 members in apple. Results: In the current study, we identified eighteen 14-3-3 gene family members from apple genome database, designated MdGF14a to MdGF14r . The isoforms possess a conserved core region composed of nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3s classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative reverse-transcription PCR (qRT-PCR) analysis exhibited diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormones treatments during floral transition phase. Four Md14-3-3 isoforms ( MdGF14a , MdGF14d , MdGF14i and MdGF14j ) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus. Conclusion: We comprehensively identified Md14-3-3s family in apple. Some Md14-3-3 genes are predominantly expressed during apple floral transition stage, and may participate in regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s for floral transition.


2020 ◽  
Author(s):  
Hongyan Shen ◽  
Qiuping Tan ◽  
Wei Xiao ◽  
Wenpeng Deng ◽  
Xiaoyan Yu ◽  
...  

Abstract Background: Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. Results: A total of 29 BdXTH genes were identified from the reference genome, and these were further divided into three main groups (Group I/II, Group III, and the Ancestral Group) through comparative phylogenetic analysis. Gene structure and protein motif analysis indicate that closely clustered BdXTH genes are relatively conserved within each group. A highly conserved amino acid domain (DEIDFEFLG) responsible for catalytic activity was identified in all BdXTH proteins. We detected three pairs of segmentally duplicated BdXTH genes and five groups of tandemly duplicated BdXTH genes, which have played important roles in the expansion of the BdXTH gene family. Cis -elements related to hormones, growth, and abiotic stress responses were identified in the promoters of each BdXTH gene. Most BdXTH genes have distinct expression patterns in different tissues and growth stages. Furthermore, when roots were treated with two abiotic stresses (salinity and drought) and four plant hormones (IAA, auxin; GA3, gibberellin; ABA, abscisic acid and BR, brassinolide), the expression levels of many BdXTH genes changed significantly, suggesting possible roles in response to various environmental stimuli and plant hormones. Conclusion: In this study, we performed genome-wide identification, characterization, and expression pattern analysis of the XTH gene family in Brachypodium, which provide valuable information for further elucidation of the biological functions of BdXTH genes in the model grass B. distachyon.


2020 ◽  
Author(s):  
Urban Kunej ◽  
Jernej Jakše ◽  
Sebastjan Radišek ◽  
Nataša Štajner

Abstract BackgroundMicro RNAs are 21- to 24-nucleotide-long, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They can modulate various biochemical and physiological processes, including plant response and resistance to fungal pathogens, by regulating the expression of numerous genes. Hops are grown for use in the brewing industry and have recently attracted the attention of the pharmaceutical industry. Severe Verticillium wilt disease caused by the phytopathogenic fungus Verticillium nonalfalfae is the main factor in yield loss in many crops, including hops (Humulus lupulus L.). ResultsIn our study, we identified miRNAs in hops and their expression patterns in the roots of susceptible and resistant hop cultivars in the early stages of infection with the fungus V. nonalfalfae. In total 56 known and 43 novel miRNAs were predicted. In response to infection with V. nonalfalfae, we found five known and two novel miRNAs that are differentially expressed in the susceptible cultivar and six known miRNAs in the resistant cultivar. Differentially expressed miRNAs target 49 transcripts and their gene ontology enrichment analysis showed that the susceptible cultivar responds by modulating the processes of protein localization and pigment synthesis, whereas the resistant cultivar responds by modulating transcription factors and hormone signalling.ConclusionThe results of our study suggest that the susceptible and the resistant cultivar respond differently at the miRNA level to infection with V. nonalfalfae and that miRNAs may contribute to the successful defence of the resistant cultivar.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Muhammad Mobeen Tahir ◽  
Huiru Yang ◽  
...  

Abstract Background: Apple ( Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members have been identified to play vital roles in flowering. However, little information was available about the 14-3-3 members in apple. Results: In the current study, we identified eighteen 14-3-3 gene family members from apple genome database, designated MdGF14a to MdGF14r , 17 of them are transcribed. The isoforms possess a conserved core region composed of nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3s classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative reverse-transcription PCR (qRT-PCR) analysis exhibited diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormones treatments during floral transition phase. Four Md14-3-3 isoforms ( MdGF14a , MdGF14d , MdGF14i and MdGF14j ) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Conclusion: We comprehensively identified Md14-3-3s family in apple. Some Md14-3-3 genes are predominantly expressed during apple flowering transition stage, and may participate in regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s for flower transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Chao Zhang ◽  
Yanning Tan ◽  
Jemaa Essemine ◽  
Ni Li ◽  
Zhongxiao Hu ◽  
...  

Abstract Background: Stress repressive zinc finger (SRZ) gene family in rice is one of the plant defense gene families that play a pivotal role in plant growth regulation and development, particularly under stressful conditions. However, there is no genome-wide survey regarding SRZ gene family in rice (OsSRZ) till date. Results: We studied, herein, this gene family by performing a genome-wide screening and we identified 25 OsSRZ gene members using Japonica cultivar as an investigating material. Their chromosome localizations, phylogenetic relationships, genomic structures, conserved domains and promoter cis-regulatory elements were analyzed. Besides, their spatio-temporal expression profiles and expression patterns under various hormones and stress treatments were also assessed. Based on the phylogeny and domain constitution, the OsSRZ gene family was classified into five groups (I-V). Conserved domains analysis demonstrates that OsSRZ proteins contain at least one highly conserved SRZ domain. The analysis of expression patterns of the SRZ gene family reveal that OsSRZ genes display tissue-specific expression patterns at various rice developmental stages and exhibit differential responses to both phytohormones and abiotic stresses. Furthermore, q-RT-PCR analysis reveals that Os SRZ genes exhibit different expression patterns under various abiotic stresses. We notice the presence of a single specific gene considerably or strongly up-regulated for each kind of abiotic stress. Over 12 OsSRZ genes analyzed with q-RT-PCR, solely 4 genes (OsSRZ 1, 2, 10 and 11) were found to be substantially or strongly up-regulated following abiotic stress. Notably, OsSRZ 10 and 11 were up-regulated under heat stress by 7 and 5 times, respectively. However, OsSRZ2 was up-regulated by 7 and 3.5 folds under salt and cold stresses, respectively. Interestingly, OsSRZ1 was up-regulated by about 3~11 times in 24 h following artificial oxidative stress application using 1 mM H2O2 . Conclusions: We deduce that some members of OsSRZ gene family function as abiotic stress marker in rice. At the genomic level and expression pattern, our genome-wide survey could provide promising and valuable insights to widen and strengthen further future investigation by leading a cutting edge research regarding the biological and molecular functions of this gene family.


Sign in / Sign up

Export Citation Format

Share Document