Identification of stress repressive zinc finger gene family and its expression analysis in rice under abiotic constraints

2020 ◽  
Author(s):  
Chao Zhang ◽  
Yanning Tan ◽  
Jemaa Essemine ◽  
Ni Li ◽  
Zhongxiao Hu ◽  
...  

Abstract Background: Stress repressive zinc finger (SRZ) gene family in rice is one of the plant defense gene families that play a pivotal role in plant growth regulation and development, particularly under stressful conditions. However, there is no genome-wide survey regarding SRZ gene family in rice (OsSRZ) till date. Results: We studied, herein, this gene family by performing a genome-wide screening and we identified 25 OsSRZ gene members using Japonica cultivar as an investigating material. Their chromosome localizations, phylogenetic relationships, genomic structures, conserved domains and promoter cis-regulatory elements were analyzed. Besides, their spatio-temporal expression profiles and expression patterns under various hormones and stress treatments were also assessed. Based on the phylogeny and domain constitution, the OsSRZ gene family was classified into five groups (I-V). Conserved domains analysis demonstrates that OsSRZ proteins contain at least one highly conserved SRZ domain. The analysis of expression patterns of the SRZ gene family reveal that OsSRZ genes display tissue-specific expression patterns at various rice developmental stages and exhibit differential responses to both phytohormones and abiotic stresses. Furthermore, q-RT-PCR analysis reveals that Os SRZ genes exhibit different expression patterns under various abiotic stresses. We notice the presence of a single specific gene considerably or strongly up-regulated for each kind of abiotic stress. Over 12 OsSRZ genes analyzed with q-RT-PCR, solely 4 genes (OsSRZ 1, 2, 10 and 11) were found to be substantially or strongly up-regulated following abiotic stress. Notably, OsSRZ 10 and 11 were up-regulated under heat stress by 7 and 5 times, respectively. However, OsSRZ2 was up-regulated by 7 and 3.5 folds under salt and cold stresses, respectively. Interestingly, OsSRZ1 was up-regulated by about 3~11 times in 24 h following artificial oxidative stress application using 1 mM H2O2 . Conclusions: We deduce that some members of OsSRZ gene family function as abiotic stress marker in rice. At the genomic level and expression pattern, our genome-wide survey could provide promising and valuable insights to widen and strengthen further future investigation by leading a cutting edge research regarding the biological and molecular functions of this gene family.

2021 ◽  
Vol 22 (22) ◽  
pp. 12515
Author(s):  
Yisheng Fang ◽  
Dong Cao ◽  
Hongli Yang ◽  
Wei Guo ◽  
Wenqi Ouyang ◽  
...  

The LOR (LURP-one related) family genes encode proteins containing a conserved LOR domain. Several members of the LOR family genes are required for defense against Hyaloperonospora parasitica (Hpa) in Arabidopsis. However, there are few reports of LOR genes in response to abiotic stresses in plants. In this study, a genome-wide survey and expression levels in response to abiotic stresses of 36 LOR genes from Glycine max were conducted. The results indicated that the GmLOR gene family was divided into eight subgroups, distributed on 14 chromosomes. A majority of members contained three extremely conservative motifs. There were four pairs of tandem duplicated GmLORs and nineteen pairs of segmental duplicated genes identified, which led to the expansion of the number of GmLOR genes. The expansion patterns of the GmLOR family were mainly segmental duplication. A heatmap of soybean LOR family genes showed that 36 GmLOR genes exhibited various expression patterns in different tissues. The cis-acting elements in promoter regions of GmLORs include abiotic stress-responsive elements, such as dehydration-responsive elements and drought-inducible elements. Real-time quantitative PCR was used to detect the expression level of GmLOR genes, and most of them were expressed in the leaf or root except that GmLOR6 was induced by osmotic and salt stresses. Moreover, GmLOR4/10/14/19 were significantly upregulated after PEG and salt treatments, indicating important roles in the improvement of plant tolerance to abiotic stress. Overall, our study provides a foundation for future investigations of GmLOR gene functions in soybean.


2020 ◽  
Author(s):  
Jun-Shan Gao ◽  
Pei-pei Wang ◽  
Na Sun ◽  
Jessica-Maguy ◽  
MIENANDI NKODIA ◽  
...  

Abstract Background: The B-BOX (BBX) proteins have important functions in the regulation of photomorphogenesis. The BBX gene family has been identified in several plants, such as rice, Arabidopsis and tomato. However, there still lack a genome-wide survey of BBX genes in cotton. Results: In our present study, 63 GhBBX genes were identified in cotton. The analyses of phylogenetic evolution and gene structure showed that the GhBBX genes were divided into five subfamilies, and contained B-box conserved domains. qRT-PCR analysis releaved that both GhBBX27 and GhBBX33 had potential roles in proanthocyanidin synthesis of brown cotton fibers.Conclusions: This study provides a genome-wide survey of the BBX gene family in cotton and highlights its role in proanthocyanidin synthesis. This result will help us to further understand the complexity of the BBX gene family and the functional characteristics of its members.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Cao ◽  
Gang Cheng ◽  
Lu Wang ◽  
Tayier Maimaitijiang ◽  
Haiyan Lan

Phosphoenolpyruvate carboxylase (PEPC) plays pivotal roles in the carbon fixation of photosynthesis and a variety of metabolic and stress pathways. Suaeda aralocaspica belongs to a single-cellular C4 species and carries out a photosynthetic pathway in an unusually elongated chlorenchyma cell, which is expected to have PEPCs with different characteristics. To identify the different isoforms of PEPC genes in S. aralocaspica and comparatively analyze their expression and regulation patterns as well as the biochemical and enzymatic properties in this study, we characterized a bacterial-type PEPC (BTPC; SaPEPC-4) in addition to the two plant-type PEPCs (PTPCs; SaPEPC-1 and SaPEPC-2) using a genome-wide identification. SaPEPC-4 presented a lower expression level in all test combinations with an unknown function; two SaPTPCs showed distinct subcellular localizations and different spatiotemporal expression patterns but positively responded to abiotic stresses. Compared to SaPEPC-2, the expression of SaPEPC-1 specifically in chlorenchyma cell tissues was much more active with the progression of development and under various stresses, particularly sensitive to light, implying the involvement of SaPEPC-1 in a C4 photosynthetic pathway. In contrast, SaPEPC-2 was more like a non-photosynthetic PEPC. The expression trends of two SaPTPCs in response to light, development, and abiotic stresses were also matched with the changes in PEPC activity in vivo (native) or in vitro (recombinant), and the biochemical properties of the two recombinant SaPTPCs were similar in response to various effectors while the catalytic efficiency, substrate affinity, and enzyme activity of SaPEPC-2 were higher than that of SaPEPC-1 in vitro. All the different properties between these two SaPTPCs might be involved in transcriptional (e.g., specific cis-elements), posttranscriptional [e.g., 5′-untranslated region (5′-UTR) secondary structure], or translational (e.g., PEPC phosphorylation/dephosphorylation) regulatory events. The comparative studies on the different isoforms of the PEPC gene family in S. aralocaspica may help to decipher their exact role in C4 photosynthesis, plant growth/development, and stress resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shefali Mishra ◽  
Pradeep Sharma ◽  
Rajender Singh ◽  
Ratan Tiwari ◽  
Gyanendra Pratap Singh

AbstractThe SnRK gene family is a key regulator that plays an important role in plant stress response by phosphorylating the target protein to regulate subsequent signaling pathways. This study was aimed to perform a genome-wide analysis of the SnRK gene family in wheat and the expression profiling of SnRKs in response to abiotic stresses. An in silico analysis identified 174 SnRK genes, which were then categorized into three subgroups (SnRK1/2/3) on the basis of phylogenetic analyses and domain types. The gene intron–exon structure and protein-motif composition of SnRKs were similar within each subgroup but different amongst the groups. Gene duplication and synteny between the wheat and Arabidopsis genomes was also investigated in order to get insight into the evolutionary aspects of the TaSnRK family genes. The result of cis-acting element analysis showed that there were abundant stress- and hormone-related cis-elements in the promoter regions of 129 SnRK genes. Furthermore, quantitative real-time PCR data revealed that heat, salt and drought treatments enhanced TaSnRK2.11 expression, suggesting that it might be a candidate gene for abiotic stress tolerance. We also identified eight microRNAs targeting 16 TaSnRK genes which are playing important role across abiotic stresses and regulation in different pathways. These findings will aid in the functional characterization of TaSnRK genes for further research.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 250 ◽  
Author(s):  
Ruimei Li ◽  
Shuai Yuan ◽  
Yingdui He ◽  
Jie Fan ◽  
Yangjiao Zhou ◽  
...  

Galactinol synthases (GolSs) are the key enzymes that participate in raffinose family oligosaccharides (RFO) biosynthesis, which perform a big role in modulating plant growth and response to biotic or abiotic stresses. To date, no systematic study of this gene family has been conducted in cassava (Manihot esculenta Crantz). Here, eight MeGolS genes are isolated from the cassava genome. Based on phylogenetic background, the MeGolSs are clustered into four groups. Through predicting the cis-elements in their promoters, it was discovered that all MeGolS members act as hormone-, stress-, and tissue-specific related elements to different degrees. MeGolS genes exhibit incongruous expression patterns in various tissues, indicating that different MeGolS proteins might have diverse functions. MeGolS1 and MeGolS3–6 are highly expressed in leaves and midveins. MeGolS3–6 are highly expressed in fibrous roots. Quantitative real-time Polymerase Chain Reaction (qRT-PCR) analysis indicates that several MeGolSs, including MeGolS1, 2, 5, 6, and 7, are induced by abiotic stresses. microRNA prediction analysis indicates that several abiotic stress-related miRNAs target the MeGolS genes, such as mes-miR156, 159, and 169, which also respond to abiotic stresses. The current study is the first systematic research of GolS genes in cassava, and the results of this study provide a basis for further exploration the functional mechanism of GolS genes in cassava.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10617
Author(s):  
Jie Li ◽  
Xinhao Liu ◽  
Qingmei Wang ◽  
Junyan Sun ◽  
Dexian He

To set a systematic study of the Sorghum cystatins (SbCys) gene family, a genome-wide analysis of the SbCys family genes was performed by bioinformatics-based methods. In total, 18 SbCys genes were identified in Sorghum, which were distributed unevenly on chromosomes, and two genes were involved in a tandem duplication event. All SbCys genes had similar exon/intron structure and motifs, indicating their high evolutionary conservation. Transcriptome analysis showed that 16 SbCys genes were expressed in different tissues, and most genes displayed higher expression levels in reproductive tissues than in vegetative tissues, indicating that the SbCys genes participated in the regulation of seed formation. Furthermore, the expression profiles of the SbCys genes revealed that seven cystatin family genes were induced during Bipolaris sorghicola infection and only two genes were responsive to aphid infestation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that 17 SbCys genes were induced by one or two abiotic stresses (dehydration, salt, and ABA stresses). The interaction network indicated that SbCys proteins were associated with several biological processes, including seed development and stress responses. Notably, the expression of SbCys4 was up-regulated under biotic and abiotic stresses, suggesting its potential roles in mediating the responses of Sorghum to adverse environmental impact. Our results provide new insights into the structural and functional characteristics of the SbCys gene family, which lay the foundation for better understanding the roles and regulatory mechanism of Sorghum cystatins in seed development and responses to different stress conditions.


2021 ◽  
Author(s):  
RuoLan Huang ◽  
Dong Xiao ◽  
Xin Wang ◽  
Yi Shen ◽  
Jie Zhan ◽  
...  

Abstract Background: Late embryogenesis abundant (LEA) proteins are a group of highly hydrophilic glycine-rich proteins, which accumulate in the late stage of seed maturation and are associated with many abiotic stresses. However, few peanut LEA genes had been reported, and the research on the number, location, structure, molecular phylogeny and expression of AhLEAs was very limited. Results: In this study, 126 LEA genes were identified in the peanut genome through genome-wide analysis and were further divided into eight groups. Sequence analysis showed that most of the AhLEAs (85.7 %) had no or only one intron. LEA genes were randomly distributed on 20 chromosomes. Compared with tandem duplication, segmental duplication played a more critical role in AhLEAs amplication, and 93 segmental duplication AhLEAs and 5 pairs of tandem duplication genes were identified. Synteny analysis showed that some AhLEAs genes come from a common ancestor, and genome rearrangement and translocation occurred among these genomes. Almost all promoters of LEAs contain ABRE, MYB recognition sites, MYC recognition sites, and ERE cis-acting elements, suggesting that the LEA genes were involved in stress response. Gene expression analyses revealed that most of the LEAs were expressed in the late stages of peanut embryonic development. LEA3 (AH16G06810.1, AH06G03960.1), and Dehydrin (AH07G18700.1, AH17G19710.1) were highly expressed in roots, stems, leaves and flowers. Moreover, 100 AhLEAs were involved in response to drought, low-temperature, or Al stresses. Some LEAs that were regulated by different abiotic stresses were also regulated by hormones including ABA, brassinolide, ethylene and salicylic acid. Interestingly, AhLEAs that were up-regulated by ethylene and salicylic acid showed obvious subfamily preferences.Conclusions: AhLEAs are involved in abiotic stress response, and segmental duplication plays an important role in the evolution and amplification of AhLEAs. The genome-wide identification, classification, evolutionary and expression analyses of the AhLEA gene family provide a foundation for further exploring the LEA genes’ function in response to abiotic stress in peanuts.


Author(s):  
Wei Lai ◽  
Zhaoyang Hu ◽  
Chuxia Zhu ◽  
Yingui Yang ◽  
Shiqiang Liu ◽  
...  

Protein ubiquitination is one of the most common modifications that can degrade or modify proteins in eukaryotic cells. The E2 ubiquitin-conjugating enzymes (UBCs) are involved in multiple biological processes of eukaryotes and their response to adverse stresses. Genome-wide survey of the UBC gene family has been performed in many plant species but not in cucumber (Cucumis sativus). In this study, a total of 38 UBC family genes (designated as CsUBC1–CsUBC38) were identified in cucumber. The phylogenetic analysis of UBC proteins from cucumber, Arabidopsis and maize indicated that these proteins could be divided into 15 groups. Most of the phylogenetically related CsUBC members had similar conserved motif patterns and gene structures. The CsUBC genes were unevenly distributed on seven chromosomes, and gene duplication analysis indicated that segmental duplication has played a significant role in the expansion of the cucumber UBC gene family. Promoter analysis of these genes resulted in the identification of many hormone-, stress- and development-related cis-elements. The CsUBC genes exhibited differential expression patterns in different tissues and developmental stages of fruit ripening. In addition, a total of 14 CsUBC genes were differentially expressed upon downy mildew (DM) infection compared with the control. Our results lay the foundation for further clarification of the roles of the CsUBC genes in the future.


Sign in / Sign up

Export Citation Format

Share Document