scholarly journals A long non-coding RNA, HOTAIR, promotes cartilage degradation in osteoarthritis by inhibiting WIF-1 expression and activating Wnt pathway

2020 ◽  
Author(s):  
Yang Yang ◽  
Dan Xing ◽  
Yawei Wang ◽  
Haobo Jia ◽  
Bing Li ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are recently found to be critical regulators of the epigenome. However, our knowledge of their role in osteoarthritis (OA) development is limited. This study investigates the mechanism by which HOTAIR, a key lncRNA with elevated expression in OA, affects OA disease progression. Results: HOTAIR expression was greatly elevated in osteoarthritic compared to normal chondrocytes. Silencing and over-expression of HOTAIR in SW1353 cells respectively reduced and increased the expression of genes associated with cartilage degradation in OA. Investigation of molecular pathways revealed that HOTAIR acted directly on Wnt inhibitory factor 1 (WIF-1) by increasing histone H3K27 trimethylation in the WIF-1 promoter, leading to WIF-1 repression that favours activation of the Wnt/β-catenin pathway. Conclusions: Activation of Wnt/β-catenin signalling by HOTAIR through WIF-1 repression in osteoarthritic chondrocytes increases catabolic gene expression and promotes cartilage degradation. This is the first study to demonstrate a direct link between HOTAIR, WIF-1 and OA progression, which may be useful for future investigations into disease biomarkers or therapeutic targets.

2020 ◽  
Author(s):  
Yang Yang ◽  
Dan Xing ◽  
Yawei Wang ◽  
Haobo Jia ◽  
Bing Li ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are recently found to be critical regulators of the epigenome. However, our knowledge of their role in osteoarthritis (OA) development is limited. This study investigates the mechanism by which HOTAIR, a key lncRNA with elevated expression in OA, affects OA disease progression.Results: HOTAIR expression was greatly elevated in osteoarthritic compared to normal chondrocytes. Silencing and over-expression of HOTAIR in SW1353 cells respectively reduced and increased the expression of genes associated with cartilage degradation in OA. Investigation of molecular pathways revealed that HOTAIR acted directly on Wnt inhibitory factor 1 (WIF-1) by increasing histone H3K27 trimethylation in the WIF-1 promoter, leading to WIF-1 repression that favours activation of the Wnt/β-catenin pathway.Conclusions: Activation of Wnt/β-catenin signalling by HOTAIR through WIF-1 repression in osteoarthritic chondrocytes increases catabolic gene expression and promotes cartilage degradation. This is the first study to demonstrate a direct link between HOTAIR, WIF-1 and OA progression, which may be useful for future investigations into disease biomarkers or therapeutic targets.


2020 ◽  
Author(s):  
Yang Yang ◽  
Dan Xing ◽  
Yawei Wang ◽  
Haobo Jia ◽  
Bing Li ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are recently found to be critical regulators of the epigenome. However, our knowledge of their role in osteoarthritis (OA) development is limited. This study investigates the mechanism by which HOTAIR, a key lncRNA with elevated expression in OA, affects OA disease progression. Results: HOTAIR expression was greatly elevated in osteoarthritic compared to normal chondrocytes. Silencing and over-expression of HOTAIR in SW1353 cells respectively reduced and increased the expression of genes associated with cartilage degradation in OA. Investigation of molecular pathways revealed that HOTAIR acted directly on Wnt inhibitory factor 1 (WIF-1) by increasing histone H3K27 trimethylation in the WIF-1 promoter, leading to WIF-1 repression that favours activation of the Wnt/β-catenin pathway. Conclusions: Activation of Wnt/β-catenin signalling by HOTAIR through WIF-1 repression in osteoarthritic chondrocytes increases catabolic gene expression and promotes cartilage degradation. This is the first study to demonstrate a direct link between HOTAIR, WIF-1 and OA progression, which may be useful for future investigations into disease biomarkers or therapeutic targets.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831769756 ◽  
Author(s):  
Hui Shi ◽  
Jin Pu ◽  
Xiao-Li Zhou ◽  
Yun-Ye Ning ◽  
Chong Bai

This study aimed to investigate the effects of long non-coding RNA ROR (regulator of reprogramming) on cisplatin (DDP) resistance in patients with non-small-cell lung cancer by regulating PI3K/Akt/mTOR signaling pathway. Human cisplatin-resistant A549/DDP cell lines were selected and divided into control group, negative control group, si-ROR group, ROR over-expression group, Wortmannin group, and ROR over-expression + Wortmannin group. MTT assay was used to determine the optimum inhibitory concentration of DDP. Quantitative real-time polymerase chain reaction and western blotting were applied to detect expressions of long non-coding RNA ROR, PI3K, Akt, and mTOR. Colony-forming assay, scratch test, Transwell assay, and flow cytometry were conducted to detect cell proliferation, migration, invasion, and apoptosis, respectively. Tumor-formation assay was performed to detect the growth of transplanted tumors. Long non-coding RNA ROR expression was high in human A549/DDP cell lines. Compared with the control and negative control groups, the mRNA and protein expressions of PI3K, Akt, mTOR, and bcl-2 decreased, whereas the mRNA and protein expression of bax and the sensitivity of cells to DDP significantly increased. Cell proliferation, migration, and invasion abilities decreased in the si-ROR and Wortmannin groups. In comparison with control and negative control groups, the mRNA and protein expressions of PI3K, Akt, mTOR, and bcl-2 increased, whereas the mRNA and protein expressions of bax decreased, the sensitivity of cells to DDP significantly increased, and cell proliferation, migration, and invasion abilities decreased in the ROR over-expression group. For nude mice in tumor-formation assay, compared with control and negative control groups, the tumor weight was found to be lighter (1.03 ± 0.15) g, the protein expressions of PI3K, Akt, mTOR, and bcl-2 decreased, and the protein expression of bax increased in the si-ROR group. Long non-coding RNA ROR may affect the sensitivity of lung adenocarcinoma cells to DDP by targeting PI3K/Akt/mTOR signaling pathway.


2021 ◽  
Author(s):  
Thomas Nieto ◽  
Yash Sinha ◽  
Qin Qin Zhuang ◽  
Mathew Coleman ◽  
Joanne D Stockton ◽  
...  

Background: Barretts Oesophagus (BO) presents a particular pathological dilemma, in that patients who have no dysplasia within their BO experience a small but significant risk of malignant progression each year. Screening programmes have attempted to reduce the mortality from BO associated oesophageal adenocarcinoma but cannot predict which BO patients will progress to invasive malignancy. We have previously identified the long non coding RNA, OR3A4, is differentially hypomethylated in progressive BO. We aimed to understand its role in BO pathogenicity Methods: The stable BO cell line CP-A, as well as the oesophageal adenocarcinoma cells line OE-33 was transfected with a lentiviral OR3A4 over-expression vector, and underwent high resolution microscopy, immunofluorescence, RT-qPCR, RNA sequencing, and targeted drug screening with the p38-MAPK inhibitor domipramod to understand the effects of OR3A4 expression on progression. We then compared progressive vs. non-progressive BO samples using quantitative multi-fluorophore (Vectra) immunohistochemistry. Results: Over-expression of OR3A4 in CP-A lines resulted in a hyperproliferative, dysplastic cellular phenotype, with strong over-expression of MAPK and anti-apoptotic pathways at the RNA and protein level, which was sensitive to the p38-MAPK inhibitor domipramod. Vectra immunohistochemistry demonstrated that progressive BO had reduced visibility associated with a reduction in CD8+ T-cells and CD68+ macrophages and reduced CD4+ T-cells in the stomal compartment. Conclusion: The overexpression of OR3A4, which we have previously shown is associated with progressive BO leads to a proliferative dysplastic cellular phenotype associated with increased, reversible MAPK signalling and loss of immune visibility.


2016 ◽  
Vol 62 (5) ◽  
pp. 544-554 ◽  
Author(s):  
D.D. Zhdanov ◽  
D.A. Vasina ◽  
E.V. Orlova ◽  
V.S. Orlova ◽  
M.V. Pokrovskaya ◽  
...  

Human telomerase catalytic subunit hTERT is subjected to alternative splicing results in loss of its function and leads to decrease of telomerase activity. However, very little is known about the mechanism of hTERT pre-mRNA alternative splicing. Apoptotic endonuclease EndoG is known to participate this process. The aim of this study was to determine the role of EndoG in regulation of hTERT alternative splicing. Increased expression of b-deletion splice variant was determined during EndoG over-expression in CaCo-2 cell line, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. hTERT alternative splicing was induced by 47-mer RNA oligonucleotide in naked nuclei and in cells after transfection. Identified long non-coding RNA, that is the precursor of 47-mer RNA oligonucleotide. Its size is 1754 nucleotides. Based on the results the following mechanism was proposed. hTERT pre-mRNA is transcribed from coding DNA strand while long non-coding RNA is transcribed from template strand of hTERT gene. EndoG digests long non-coding RNA and produces 47-mer RNA oligonucleotide complementary to hTERT pre-mRNA exon 8 and intron 8 junction place. Interaction of 47-mer RNA oligonucleotide and hTERT pre-mRNA causes alternative splicing.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S90-S90
Author(s):  
Zheng Kuai ◽  
Meiting Chen ◽  
yang yu ◽  
Fan Yang ◽  
chunxiang Zhang

Abstract Aging is the inevitable, irreversible decline in function on the cellular and organ level leading to increased incidence of the most frequent diseases such as cancer and cardiovascular disease, that occurs over time. whereas the molecular mechanisms of senescence remain largely unknown. Here we identified that a novel long noncoding RNA, Morrbid was significantly decreased in different organs of aged mice, such as heart, liver, spleen, lung, kidney and brain. Interestingly, the telomeres length of Morrbid KO mice were significantly shorted than the WT mice at the same age. We also found that Morrbid was steeply decreased in a natural mouse cardiac myocyte senescence model. The senescence of mouse cardiac myocytes was effectively attenuated by Morrbid over-expression shown by the decreased β-galactosidase staining, increased telomere activity, decreased production of ROS and decreased cell apoptosis, but was enhanced by Morrbid knockdown. The results suggest that Morrbid is a critical regulator in senescence and could be used as a novel diagnostic biomarker for it, and a new therapeutic target for diverse diseases.


2017 ◽  
Vol 41 (6) ◽  
pp. 2489-2502 ◽  
Author(s):  
Bo Yu ◽  
Xuan Ye ◽  
Qiong Du ◽  
Bin Zhu ◽  
Qing Zhai

Background/Aims: The long non-coding RNA colorectal neoplasia differentially expressed (CRNDE) contributes to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer remains unknown. In the present study, we investigated whether CRNDE was involved in the development of colorectal cancer via the binding of microRNA (miR)-217 with transcription factor 7-like 2 (TCF7L2) to enhance the Wnt signaling pathway. Methods: Quantitative polymerase chain reaction was used to detect CRNDE, miR-217 and TCF7L2 in colorectal cancer tissues and cells. The CCK-8 assay, wound healing assay, and Transwell assay were used to detect cell proliferation, migration and invasion, respectively. Western blotting and luciferase activity assays were used to identify CRNDE and TCF7L2 as one of the direct targets of miR-217. The activity of the Wnt/β-catenin signaling pathway was analyzed by the TOPflash assay, and the subcellular localization of β-catenin and TCF7L2 was analyzed by western blotting and confocal microscopy. Results: In this study, we found that high expression of CRNDE is negatively correlated with low expression of miR-217 in colorectal cancer tissue and colorectal cancer cells. The dual luciferase reporter analysis showed that miR-217 is bound to CRNDE and TCF7L2 and negatively regulate their expression. CRNDE down-regulation inhibited the cell proliferation, migration and invasion in vitro and in vivo and the inhibitions were both completely blocked after miR-217 inhibition or TCF7L2 overexpression. Finally, TOPflash analysis showed that the activity of Wnt/β-catenin signaling is inhibited by CRNDE down-regulation and rescued by TCF7L2 over-expression. Consistently immunostaining and western blotting analysis showed that the expression of b-catenin and TCF7L2 in the nucleus was significantly decreased by CRNDE down-regulation and was rescued by TCF7L2 over-expression. Conclusions: The present study suggest that CRNDE involves in the cell proliferation, migration and invasion of colorectal cancer cells via increasing the expression of TCF7L2 and activity of Wnt/β-catenin signaling through binding miR-217 competitively.


Sign in / Sign up

Export Citation Format

Share Document