scholarly journals UP-REGULATION OF LONG NON-CODING RNA MORBID ATTENUATES SENESCENCE

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S90-S90
Author(s):  
Zheng Kuai ◽  
Meiting Chen ◽  
yang yu ◽  
Fan Yang ◽  
chunxiang Zhang

Abstract Aging is the inevitable, irreversible decline in function on the cellular and organ level leading to increased incidence of the most frequent diseases such as cancer and cardiovascular disease, that occurs over time. whereas the molecular mechanisms of senescence remain largely unknown. Here we identified that a novel long noncoding RNA, Morrbid was significantly decreased in different organs of aged mice, such as heart, liver, spleen, lung, kidney and brain. Interestingly, the telomeres length of Morrbid KO mice were significantly shorted than the WT mice at the same age. We also found that Morrbid was steeply decreased in a natural mouse cardiac myocyte senescence model. The senescence of mouse cardiac myocytes was effectively attenuated by Morrbid over-expression shown by the decreased β-galactosidase staining, increased telomere activity, decreased production of ROS and decreased cell apoptosis, but was enhanced by Morrbid knockdown. The results suggest that Morrbid is a critical regulator in senescence and could be used as a novel diagnostic biomarker for it, and a new therapeutic target for diverse diseases.

2021 ◽  
Author(s):  
hafiza sobia ramzan ◽  
Kashif Aziz Ahmad

Background: Osteoarthritis (OA) is a common disease of the joints among old populace until today. The treatment possibilities and roles of miRNA and long non-coding RNA (lncRNA) in therapy of OA has previously been explored. However, the functional roles of Long noncoding RNA KCNQ1OT1 and miRNA let-7a-5p on Osteoarthritis development and progression remains unclear. This study aimed at investigating the influence of KCNQ1OT1 on let-7a-5p in moderation of OA development and advancement. Materials and Methods: RT-qPCR examined expression of KCNQ1OT1and let-7a-5p in cultured human primary chondrocyte cell lines. Cell transfection overexpressed or knocked down the genes and CCK-8 assay measured cell viability in the proliferation biomarkers Ki87 and PCNA. While caspase-8 and caspase-3 activity determined rate of apoptosis. Furthermore, luciferase assay analyzed the luciferase activity and western blotting analysis determined the protein expression of KCNQ1OT1 and let-7a-5p in proliferation and apoptosis biomarkers. Results: The results demonstrated that KCNQ1OT1 is upregulated in OA-mimic cells and promotes the cell viability. KCNQ1OT1 knockdown suppresses cell viability of OA cells. Furthermore KCNQ1OT1 directly binds the 3'-UTR of let-7a-5p to negatively regulate let-7a-5p expression and OA progression. While upregulated let-7a-5p abolishes the proliferation effect of KCNQ1OT1 in OA cells. Conclusion: In summary, our study provides further insights into the underlying molecular mechanisms of KCNQ1OT1 and let-7a-5p suggesting a novel therapeutic approach to OA


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1245 ◽  
Author(s):  
Xiao-Zhen Zhang ◽  
Hao Liu ◽  
Su-Ren Chen

Long non-coding RNA (lncRNA), which is a kind of noncoding RNA, is generally characterized as being more than 200 nucleotide transcripts in length. LncRNAs exhibit many biological activities, including, but not limited to, cancer development. In this review, a search of the PubMed database was performed to identify relevant studies published in English. The term “lncRNA or long non-coding RNA” was combined with a range of search terms related to the core focus of the review: mechanism, structure, regulation, and cancer. The eligibility of the retrieved studies was mainly based on the abstract. The decision as to whether or not the study was included in this review was made after a careful assessment of its content. The reference lists were also checked to identify any other study that could be relevant to this review. We first summarized the molecular mechanisms of lncRNAs in tumorigenesis, including competing endogenous RNA (ceRNA) mechanisms, epigenetic regulation, decoy and scaffold mechanisms, mRNA and protein stability regulation, transcriptional and translational regulation, miRNA processing regulation, and the architectural role of lncRNAs, which will help a broad audience better understand how lncRNAs work in cancer. Second, we introduced recent studies to elucidate the structure of lncRNAs, as there is a link between lncRNA structure and function and visualizing the architectural domains of lncRNAs is vital to understanding their function. Third, we explored emerging evidence for regulators of lncRNA expression, lncRNA turnover, and lncRNA modifications (including 5-methylcytidine, N6-methyladenosine, and adenosine to inosine editing), highlighting the dynamics of lncRNAs. Finally, we used autophagy in cancer as an example to interpret the diverse mechanisms of lncRNAs and introduced clinical trials of lncRNA-based cancer therapies.


2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1085
Author(s):  
Shailendra Kumar Dhar Dwivedi ◽  
Geeta Rao ◽  
Anindya Dey ◽  
Priyabrata Mukherjee ◽  
Jonathan D. Wren ◽  
...  

Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.


Oncogene ◽  
2021 ◽  
Author(s):  
Yina Qiao ◽  
Ting Jin ◽  
Shengdong Guan ◽  
Shaojie Cheng ◽  
Siyang Wen ◽  
...  

AbstractInvasion and metastasis are the leading causes of death in patients with breast cancer (BC), and epithelial-mesenchymal transformation (EMT) plays an essential role in this process. Here, we found that Lnc-408, a novel long noncoding RNA (lncRNA), is significantly upregulated in BC cells undergoing EMT and in BC tumor with lymphatic metastases compared with those without lymphatic metastases. Lnc-408 can enhance BC invasion and metastasis by regulating the expression of LIMK1. Mechanistically, Lnc-408 serves as a sponge for miR-654-5p to relieve the suppression of miR-654-5p on its target LIMK1. Knockdown or knockout of Lnc-408 in invasive BC cells clearly decreased LIMK1 levels, and ectopic Lnc-408 in MCF-7 cells increased LIMK1 expression to promote cell invasion. Lnc-408-mediated enhancement of LIMK1 plays a key role in cytoskeletal stability and promotes invadopodium formation in BC cells via p-cofilin/F-actin. In addition, the increased LIMK1 also facilitates the expression of MMP2, ITGB1, and COL1A1 by phosphorylating CREB. In conclusion, our findings reveal that Lnc-408 promotes BC invasion and metastasis via the Lnc-408/miR-654-5p/LIMK1 axis, highlighting a novel promising target for the diagnosis and treatment of BC.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831769756 ◽  
Author(s):  
Hui Shi ◽  
Jin Pu ◽  
Xiao-Li Zhou ◽  
Yun-Ye Ning ◽  
Chong Bai

This study aimed to investigate the effects of long non-coding RNA ROR (regulator of reprogramming) on cisplatin (DDP) resistance in patients with non-small-cell lung cancer by regulating PI3K/Akt/mTOR signaling pathway. Human cisplatin-resistant A549/DDP cell lines were selected and divided into control group, negative control group, si-ROR group, ROR over-expression group, Wortmannin group, and ROR over-expression + Wortmannin group. MTT assay was used to determine the optimum inhibitory concentration of DDP. Quantitative real-time polymerase chain reaction and western blotting were applied to detect expressions of long non-coding RNA ROR, PI3K, Akt, and mTOR. Colony-forming assay, scratch test, Transwell assay, and flow cytometry were conducted to detect cell proliferation, migration, invasion, and apoptosis, respectively. Tumor-formation assay was performed to detect the growth of transplanted tumors. Long non-coding RNA ROR expression was high in human A549/DDP cell lines. Compared with the control and negative control groups, the mRNA and protein expressions of PI3K, Akt, mTOR, and bcl-2 decreased, whereas the mRNA and protein expression of bax and the sensitivity of cells to DDP significantly increased. Cell proliferation, migration, and invasion abilities decreased in the si-ROR and Wortmannin groups. In comparison with control and negative control groups, the mRNA and protein expressions of PI3K, Akt, mTOR, and bcl-2 increased, whereas the mRNA and protein expressions of bax decreased, the sensitivity of cells to DDP significantly increased, and cell proliferation, migration, and invasion abilities decreased in the ROR over-expression group. For nude mice in tumor-formation assay, compared with control and negative control groups, the tumor weight was found to be lighter (1.03 ± 0.15) g, the protein expressions of PI3K, Akt, mTOR, and bcl-2 decreased, and the protein expression of bax increased in the si-ROR group. Long non-coding RNA ROR may affect the sensitivity of lung adenocarcinoma cells to DDP by targeting PI3K/Akt/mTOR signaling pathway.


2021 ◽  
Vol 27 ◽  
Author(s):  
Wen Xu ◽  
Bei Wang ◽  
Yuxuan Cai ◽  
Jinlan Chen ◽  
Xing Lv ◽  
...  

Background: Long non-coding RNAs (lncRNA) have been identified as novel molecular regulators in cancers. LncRNA ADAMTS9-AS2 can mediate the occurrence and development of cancer through various ways such as regulating miRNAs, activating the classical signaling pathways in cancer, and so on, which have been studied by many scholars. In this review, we summarize the molecular mechanisms of ADAMTS9-AS2 in different human cancers. Methods: Through a systematic search of PubMed, lncRNA ADAMTS9-AS2 mediated molecular mechanisms in cancer are summarized inductively. Results: ADAMTS9-AS2 aberrantly expression in different cancers is closely related to cancer proliferation, invasion, migration, inhibition of apoptosis. The involvement of ADAMTS9-AS2 in DNA methylation, mediating PI3K / Akt / mTOR signaling pathways, regulating miRNAs and proteins, and such shows its significant potential as a therapeutic cancer target. Conclusion: LncRNA ADAMTS9-AS2 can become a promising biomolecular marker and a therapeutic target for human cancer.


2021 ◽  
Author(s):  
Thomas Nieto ◽  
Yash Sinha ◽  
Qin Qin Zhuang ◽  
Mathew Coleman ◽  
Joanne D Stockton ◽  
...  

Background: Barretts Oesophagus (BO) presents a particular pathological dilemma, in that patients who have no dysplasia within their BO experience a small but significant risk of malignant progression each year. Screening programmes have attempted to reduce the mortality from BO associated oesophageal adenocarcinoma but cannot predict which BO patients will progress to invasive malignancy. We have previously identified the long non coding RNA, OR3A4, is differentially hypomethylated in progressive BO. We aimed to understand its role in BO pathogenicity Methods: The stable BO cell line CP-A, as well as the oesophageal adenocarcinoma cells line OE-33 was transfected with a lentiviral OR3A4 over-expression vector, and underwent high resolution microscopy, immunofluorescence, RT-qPCR, RNA sequencing, and targeted drug screening with the p38-MAPK inhibitor domipramod to understand the effects of OR3A4 expression on progression. We then compared progressive vs. non-progressive BO samples using quantitative multi-fluorophore (Vectra) immunohistochemistry. Results: Over-expression of OR3A4 in CP-A lines resulted in a hyperproliferative, dysplastic cellular phenotype, with strong over-expression of MAPK and anti-apoptotic pathways at the RNA and protein level, which was sensitive to the p38-MAPK inhibitor domipramod. Vectra immunohistochemistry demonstrated that progressive BO had reduced visibility associated with a reduction in CD8+ T-cells and CD68+ macrophages and reduced CD4+ T-cells in the stomal compartment. Conclusion: The overexpression of OR3A4, which we have previously shown is associated with progressive BO leads to a proliferative dysplastic cellular phenotype associated with increased, reversible MAPK signalling and loss of immune visibility.


2016 ◽  
Vol 62 (5) ◽  
pp. 544-554 ◽  
Author(s):  
D.D. Zhdanov ◽  
D.A. Vasina ◽  
E.V. Orlova ◽  
V.S. Orlova ◽  
M.V. Pokrovskaya ◽  
...  

Human telomerase catalytic subunit hTERT is subjected to alternative splicing results in loss of its function and leads to decrease of telomerase activity. However, very little is known about the mechanism of hTERT pre-mRNA alternative splicing. Apoptotic endonuclease EndoG is known to participate this process. The aim of this study was to determine the role of EndoG in regulation of hTERT alternative splicing. Increased expression of b-deletion splice variant was determined during EndoG over-expression in CaCo-2 cell line, after EndoG treatment of cell cytoplasm and nuclei and after nuclei incubation with EndoG digested cell RNA. hTERT alternative splicing was induced by 47-mer RNA oligonucleotide in naked nuclei and in cells after transfection. Identified long non-coding RNA, that is the precursor of 47-mer RNA oligonucleotide. Its size is 1754 nucleotides. Based on the results the following mechanism was proposed. hTERT pre-mRNA is transcribed from coding DNA strand while long non-coding RNA is transcribed from template strand of hTERT gene. EndoG digests long non-coding RNA and produces 47-mer RNA oligonucleotide complementary to hTERT pre-mRNA exon 8 and intron 8 junction place. Interaction of 47-mer RNA oligonucleotide and hTERT pre-mRNA causes alternative splicing.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5944
Author(s):  
Jianfei Tang ◽  
Xiaodan Fang ◽  
Juan Chen ◽  
Haixia Zhang ◽  
Zhangui Tang

Oral squamous cell carcinoma (OSCC) is a type of malignancy with high mortality, leading to poor prognosis worldwide. However, the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Recently, the discovery and characterization of long non-coding RNAs (lncRNAs) have revealed their regulatory importance in OSCC. Abnormal expression of lncRNAs has been broadly implicated in the initiation and progress of tumors. In this review, we summarize the functions and molecular mechanisms regarding these lncRNAs in OSCC. In addition, we highlight the crosstalk between lncRNA and tumor microenvironment (TME), and discuss the potential applications of lncRNAs as diagnostic and prognostic tools and therapeutic targets in OSCC. Notably, we also discuss lncRNA-targeted therapeutic techniques including CRISPR-Cas9 as well as immune checkpoint therapies to target lncRNA and the PD-1/PD-L1 axis. Therefore, this review presents the future perspectives of lncRNAs in OSCC therapy, but more research is needed to allow the applications of these findings to the clinic.


Sign in / Sign up

Export Citation Format

Share Document