scholarly journals Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury

2020 ◽  
Author(s):  
Han Wang ◽  
Xiaoming Zhou ◽  
Lingyun Wu ◽  
Guangjie Liu ◽  
Weidong Xu ◽  
...  

Abstract Background: Aucubin (Au), an iridoid glycoside from natural plants, has anti-oxidative and anti-inflammatory bioactivities; however, its effects on a traumatic brain injury (TBI) model remain unknown. We explored the potential role of Au in a H 2 O 2 -induced oxidant damage in primary cortical neurons and weight-drop induced-TBI in a mouse model. Methods: In vitro experiments, the various concentrations of Au (50 μg/ml, 100 μg/ml or 200 μg/ml) were added in culture medium at 0h and 6h after neurons stimulated by H 2 O 2 (100μM). After exposed for 12 hours, neurons were collected for western blot (WB), immunofluorescence and M29,79-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. In vivo experiments, Au (20 mg/kg or 40 mg/kg) was administrated intraperitoneally at 30 min, 12 h, 24 h, and 48 h after modeling. Brain water content, neurological deficits and cognitive functions were measured at specific time, respectively. Cortical tissue around focal trauma was collected for WB, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, Nissl staining, quantitative real time polymerase chain reaction (q-PCR), immunofluorescence/immunohistochemistry and enzyme linked immunosorbent assay (ELISA) at 72 h after TBI. RNA interference experiments were performed to determine the effects of Nuclear factor erythroid-2 related factor 2 (Nrf2) on TBI mice with Au (40 mg/kg) treatment. Mice were intracerebroventricularly administrated with lentivirus at 72 h before TBI establishment. The cortex was obtained at 72 h after TBI and used for WB and q-PCR. Results: Au enhanced the translocation of Nrf2 into the nucleus, activated antioxidant enzymes, suppressed excessive generation of reactive oxygen species (ROS) and reduced cell apoptosis both in vitro and vivo experiments. In the mice model of TBI, Au markedly attenuated brain edema, histological damages and improved neurological and cognitive deficits. Au significantly suppressed high mobility group box 1(HMGB1)-mediated aseptic inflammation. Nrf2 knockdown in TBI mice blunted the antioxidant and anti-inflammatory neuroprotective effects of the Au. Conclusions: Taken together, our data suggest that Au provides a neuroprotective effect in TBI mice model by inhibiting oxidative stress and inflammatory responses; the mechanisms involve triggering Nrf2-induced antioxidant system.

2020 ◽  
Author(s):  
Han Wang ◽  
Xiaoming Zhou ◽  
Lingyun Wu ◽  
Guangjie Liu ◽  
Weidong Xu ◽  
...  

Abstract Background: Aucubin (Au) has anti-oxidative and anti-inflammatory bioactivities; however, its effects on a traumatic brain injury (TBI) model remain unknown. We explored the potential role of Au in a H2O2-induced oxidant damage in primary cortical neurons and weight-drop induced-TBI in a mouse model.Methods: Neuronal apoptosis, brain water content, histological damages and neurological deficits and cognitive functions were measured. We performed western blot, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, Nissl staining, quantitative real time polymerase chain reaction (q-PCR), immunofluorescence/immunohistochemistry and enzyme linked immunosorbent assay (ELISA). RNA interference experiments were performed to determine the effects of Nuclear factor erythroid-2 related factor 2 (Nrf2) on TBI mice with intraperitoneal injection of Au.Results: We found that Au enhanced the translocation of Nrf2 into the nucleus, activated antioxidant enzymes, suppressed excessive generation of reactive oxygen species (ROS) and reduced cell apoptosis in vitro and vivo experiments. In the mice model of TBI, Au markedly attenuated brain edema, histological damages and improved neurological and cognitive deficits. Au significantly suppressed high mobility group box 1(HMGB1)-mediated aseptic inflammation. Nrf2 knockdown in TBI mice blunted the antioxidant and anti-inflammatory neuroprotective effects of the Au.Conclusions: Taken together, our data suggest that Au provides a neuroprotective effect in TBI mice model by inhibiting oxidative stress and inflammatory responses; the mechanisms involve triggering Nrf2-induced antioxidant system.


2020 ◽  
Author(s):  
Han Wang ◽  
Xiaoming Zhou ◽  
Lingyun Wu ◽  
Guangjie Liu ◽  
Weidong Xu ◽  
...  

Abstract Background: Aucubin (Au) has anti-oxidative and anti-inflammatory bioactivities; however, its effects on a traumatic brain injury (TBI) model remain unknown. We explored the potential role of Au in a H 2 O 2 -induced oxidant damage in primary cortical neurons and weight-drop induced-TBI in a mouse model. Methods: Neuronal apoptosis, brain water content, histological damages and neurological deficits and cognitive functions were measured. We performed western blot, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, Nissl staining, quantitative real time polymerase chain reaction (q-PCR), immunofluorescence/immunohistochemistry and enzyme linked immunosorbent assay (ELISA). RNA interference experiments were performed to determine the effects of Nuclear factor erythroid-2 related factor 2 (Nrf2) on TBI mice with intraperitoneal injection of Au. Results: We found that Au enhanced the translocation of Nrf2 into the nucleus, activated antioxidant enzymes, suppressed excessive generation of reactive oxygen species (ROS) and reduced cell apoptosis in vitro and vivo experiments. In the mice model of TBI, Au markedly attenuated brain edema, histological damages and improved neurological and cognitive deficits. Au significantly suppressed high mobility group box 1(HMGB1)-mediated aseptic inflammation. Nrf2 knockdown in TBI mice blunted the antioxidant and anti-inflammatory neuroprotective effects of the Au. Conclusions: Taken together, our data suggest that Au provides a neuroprotective effect in TBI mice model by inhibiting oxidative stress and inflammatory responses; the mechanisms involve triggering Nrf2-induced antioxidant system.


2020 ◽  
pp. 096032712098422
Author(s):  
Xiaobin Liu ◽  
Min Li ◽  
Jiabao Zhu ◽  
Weidong Huang ◽  
Jinning Song

Sestrin2 (SESN2) is stress-inducible protein that confers cytoprotective effects against various noxious stimuli. Accumulating evidence has documented that SESN2 has potent anti-apoptosis and anti-oxidative stress functions. However, whether it provides neuroprotection in traumatic brain injury (TBI) models remains unexplored. The purpose of this study was to explore the regulatory effect of SESN2 on TBI using in vivo and in vitro models. We found that TBI resulted in a marked induction of SESN2 in the cerebral cortex tissues of mice. SESN2 overexpression in the brain by in vivo gene transfer significantly decreased neurological deficit, brain edema, and neuronal apoptosis of mice with TBI. Moreover, the overexpression of SESN2 significantly decreased the oxidative stress induced by TBI in mice. In vitro studies of TBI demonstrated that SESN2 overexpression decreased apoptosis and oxidative stress in scratch-injured cortical neurons. Notably, SESN2 overexpression increased the nuclear levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and enhanced the activation of Nrf2 antioxidant signaling in in vivo and in vitro models of TBI. In addition, the inhibition of Nrf2 significantly abolished SESN2-mediated neuroprotective effects in vivo and in vitro. In conclusion, these results of our work demonstrate that SESN2 protects against TBI by enhancing the activation of Nrf2 antioxidant signaling.


2020 ◽  
Vol 21 (4) ◽  
pp. 1463 ◽  
Author(s):  
Chu-Yuan Chang ◽  
Min-Zong Liang ◽  
Ching-Chih Wu ◽  
Pei-Yuan Huang ◽  
Hong-I Chen ◽  
...  

The treatment of traumatic brain injury (TBI) remains a challenge due to limited knowledge about the mechanisms underlying neuronal regeneration. This current study compared the expression of WNT genes during regeneration of injured cortical neurons. Recombinant WNT3A showed positive effect in promoting neuronal regeneration via in vitro, ex vivo, and in vivo TBI models. Intranasal administration of WNT3A protein to TBI mice increased the number of NeuN+ neurons without affecting GFAP+ glial cells, compared to control mice, as well as retained motor function based on functional behavior analysis. Our findings demonstrated that WNT3A, 8A, 9B, and 10A promote regeneration of injured cortical neurons. Among these WNTs, WNT3A showed the most promising regenerative potential in vivo, ex vivo, and in vitro.


2021 ◽  
Vol 39 (1) ◽  
pp. 73-84
Author(s):  
Jianqiang Song ◽  
Guoliang Du ◽  
Haiyun Wu ◽  
Xiangliang Gao ◽  
Zhen Yang ◽  
...  

Background: Traumatic brain injury (TBI) has been a serious public health issue. Clinically, there is an urgent need for agents to ameliorate the neuroinflammation and oxidative stress induced by TBI. Our previous research has demonstrated that quercetin could protect the neurological function. However, the detailed mechanism underlying this process remains poorly understood. Objective: This research was designed to investigate the mechanisms of quercetin to protect the cortical neurons. Methods: A modified weight-drop device was used for the TBI model. 5, 20 or 50 mg/kg quercetin was injected intraperitoneally to rats at 0.5, 12 and 24 h post TBI. Rats were sacrificed three days post injury and their cerebral cortex was obtained from the injured side. The rats were randomly assigned into three groups of equal number: TBI and quercetin group, TBI group, and Sham group. The brain water content was calculated to estimate the brain damage induced by TBI. Immunohistochemical and Western blot assays were utilized to investigate the neurobehavioral status. Enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction were performed to evaluate the inflammatory responses. The cortical oxidative stress was measured by estimating the activities of malondialdehyde, superoxide dismutase, catalase and glutathione-Px. Western blot was utilized to evaluate the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1). Results: Quercetin attenuated the brain edema and microgliosis in TBI rats. Quercetin treatment attenuated cortical inflammatory responses and oxidative stress induced by TBI insults. Quercetin treatment activated the cortical Nrf2/HO-1 pathway in TBI rats. Conclusions: Quercetin ameliorated the TBI-induced neuroinflammation and oxidative stress in the cortex through activating the Nrf2/HO-1 pathway.


2020 ◽  
Vol 11 ◽  
Author(s):  
Changchang Fu ◽  
Yihui Zheng ◽  
Jinjin Zhu ◽  
Binwen Chen ◽  
Wei Lin ◽  
...  

Neonatal hypoxic-ischemic encephalopathy (HIE) is a brain injury caused by perinatal asphyxia and is the main cause of neonatal death and chronic neurological diseases. Protection of neuron after hypoxic-ischemic (HI) brain injury is considered as a potential therapeutic target of HI brain injury. To date, there are no effective medicines for neonatal HI brain injury. Lycopene (Lyc), a member of the carotenoids family, has been reported to have anti-oxidative and anti-inflammatory effects. However, its effects and potential mechanisms in HI brain injury have not yet to be systematically evaluated. In this study, we investigated whether Lyc could ameliorate HI brain injury and explored the associated mechanism both in vivo and in vitro experiments. In vivo study, Lyc significantly reduced infarct volume and ameliorated cerebral edema, decreased inflammatory response, promoted the recovery of tissue structure, and improved prognosis following HI brain injury. In vitro study, results showed that Lyc reduced expression of apoptosis mediators in oxygen-glucose deprivation (OGD)-induced primary cortical neurons. Mechanistically, we found that Lyc-induced Nrf2/NF-κB pathway could partially reversed by Brusatol (an Nrf2 inhibitor), indicated that the Nrf2/NF-κB pathway was involved in the therapy of Lyc. In summary, our findings indicate that Lyc can attenuated HI brain injury in vivo and OGD-induced apoptosis of primary cortical neurons in vitro through the Nrf2/NF-κB signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Agustín. J. Montivero ◽  
Marisa. S. Ghersi ◽  
M. Jazmín Silvero C ◽  
Emilce Artur de la Villarmois ◽  
Johanna Catalan-Figueroa ◽  
...  

Traumatic Brain Injury (TBI) remains a leading cause of morbidity and mortality in adults under 40 years old. Once primary injury occurs after TBI, neuroinflammation and oxidative stress (OS) are triggered, contributing to the development of many TBI-induced neurological deficits, and reducing the probability of critical trauma patients´ survival. Regardless the research investment on the development of anti-inflammatory and neuroprotective treatments, most pre-clinical studies have failed to report significant effects, probably because of the limited blood brain barrier permeability of no-steroidal or steroidal anti-inflammatory drugs. Lately, neurotrophic factors, such as the insulin-like growth factor 1 (IGF-1), are considered attractive therapeutic alternatives for diverse neurological pathologies, as they are neuromodulators linked to neuroprotection and anti-inflammatory effects. Considering this background, the aim of the present investigation is to test early IGF-1 gene therapy in both OS markers and cognitive deficits induced by TBI. Male Wistar rats were injected via Cisterna Magna with recombinant adenoviral vectors containing the IGF-1 gene cDNA 15 min post-TBI. Animals were sacrificed after 60 min, 24 h or 7 days to study the advanced oxidation protein products (AOPP) and malondialdehyde (MDA) levels, to recognize the protein oxidation damage and lipid peroxidation respectively, in the TBI neighboring brain areas. Cognitive deficits were assessed by evaluating working memory 7 days after TBI. The results reported significant increases of AOPP and MDA levels at 60 min, 24 h, and 7 days after TBI in the prefrontal cortex, motor cortex and hippocampus. In addition, at day 7, TBI also reduced working memory performance. Interestingly, AOPP, and MDA levels in the studied brain areas were significantly reduced after IGF-1 gene therapy that in turn prevented cognitive deficits, restoring TBI-animals working memory performance to similar values regarding control. In conclusion, early IGF-1 gene therapy could be considered a novel therapeutic approach to targeting neuroinflammation as well as to preventing some behavioral deficits related to TBI.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 630 ◽  
Author(s):  
Sarah A. Scuderi ◽  
Alessio Ardizzone ◽  
Irene Paterniti ◽  
Emanuela Esposito ◽  
Michela Campolo

Neurodegenerative diseases (NDs) represents debilitating conditions characterized by degeneration of neuronal cells in specific brain areas, causing disability and death in patients. In the pathophysiology of NDs, oxidative stress, apoptosis and neuroinflammation have a key role, as demonstrated by in vivo and in vitro models. Therefore, the use of molecules with antioxidant and anti-inflammatory activities represents a possible strategy for the treatment of NDs. Many studies demonstrated the beneficial effects of fumaric acid esters (FAEs) to counteract neuroinflammation and oxidative stress. Among these molecules, dimethyl fumarate (DMF) showed a valid therapeutic approach to slow down neurodegeneration and relieve symptoms in patients with NDs. DMF is a methyl ester of fumaric acid and acts as modulator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway as well as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation. Therefore, this review aims to examine the potential beneficial effects of DMF to counteract oxidative stress and inflammation in patients with NDs.


2015 ◽  
Vol 123 (4) ◽  
pp. 915-923 ◽  
Author(s):  
Yizhi Liu ◽  
Jiaoxue Qiu ◽  
Zhong Wang ◽  
Wanchun You ◽  
Lingyun Wu ◽  
...  

OBJECT Oxidative stress and the inflammatory response are thought to promote brain damage in the setting of subarachnoid hemorrhage (SAH). Previous reports have shown that dimethylfumarate (DMF) can activate the Kelch-like ECH-associated protein 1–nuclear factor erythroid 2-related factor 2–antioxidant-responsive element (Keap1-Nrf2-ARE) system in vivo and in vitro, which leads to the downregulation of oxidative stress and inflammation. The aim of this study was to evaluate the potential neuroprotective effect of DMF on SAH-induced brain injury in rats. METHODS Rats were subjected to SAH by the injection of 300 μl of autologous blood into the chiasmatic cistern. Rats in a DMF-treated group were given 15 mg/kg DMF twice daily by oral gavage for 2 days after the onset of SAH. Cortical apoptosis, neural necrosis, brain edema, blood-brain barrier impairment, learning deficits, and changes in the Keap1-Nrf2-ARE pathway were assessed. RESULTS Administration of DMF significantly ameliorated the early brain injury and learning deficits induced by SAH in this animal model. Treatment with DMF markedly upregulated the expressions of agents related to Keap1-Nrf2-ARE signaling after SAH. The inflammatory response and oxidative stress were downregulated by DMF therapy. CONCLUSIONS DMF administration resulted in abatement of the development of early brain injury and cognitive dysfunction in this prechiasmatic cistern SAH model. This result was probably mediated by the effect of DMF on the Keap1-Nrf2-ARE system.


2020 ◽  
Author(s):  
Guoyuan He ◽  
Yan-Ling Han ◽  
Degang Wu ◽  
Hao Cheng ◽  
Le-An Sun ◽  
...  

Abstract Background: S100A8 is involved in the pathological processes of a variety of central nervous system(CNS) diseases related to inflammation including traumatic brain injury (TBI). However, the underlying mechanism for the induction of inflammation in the brain by S100A8 after TBI remains unclear, which was investigated in the present study.Methods: The weight-drop TBI model was used in this study. The mice were randomly assigned into 5 groups: the Sham, S100A8, S100A8 + TAK-242, TBI, and TBI + TAK-242 groups. In the S100A8 + TAK-242 and TBI + TAK-242 groups, mice were treated with TAK-242, an inhibitor of Toll-like receptor (TLR) 4, intraperitoneally at half an hour before TBI. In the S100A8 and S100A8 + TAK-242 groups, S100A8 recombinant protein was injected into the lateral ventricle of the brain. To explore the relationship between S100A8 and TLR4, Western Blot (WB), immunofluorescence, enzyme-linked immunosorbent assay (ELISA) and Nissl staining were employed. Neurological score and the brain water content were also assessed. Additionally, BV-2 microglial cells were stimulated with lipopolysaccharide (LPS) or S100A8 recombinant protein with/without TAK-242 in vitro. The expressions of the related proteins were subsequently detected with WB or ELISA.Results: The levels of S100A8 protein and pro-inflammatory cytokines were significantly increased after TBI. After intracerebroventricular administration of S100A8, the neurological scores of non-TBI animals were decreased remarkably with severe brain edema. Furthermore, the levels of TLR4, p-p65 and myeloid differentiation factor 88(MyD88) were all increased after S100A8 administration or TBI, which could be restored by TAK-242. Meanwhile, p-p65 and MyD88 were upregulated after S100A8 or LPS stimulation in vitro, which also could be suppressed by TAK-242.Conclusions: The present study demonstrated that TLR4-MyD88 pathway was activated by S100A8, which was essential to the development of inflammation in the brain after TBI.


Sign in / Sign up

Export Citation Format

Share Document