scholarly journals Evaluation of plasmatic extracellular vesicles by size

2021 ◽  
Author(s):  
Laura Cantone ◽  
Mirjam Hoxha ◽  
Chiara Favero ◽  
Luca Ferrari ◽  
Valentina Bollati

Abstract Extracellular vesicles (EVs) play a key role in many physiological and pathological processes [1]. EVs are a heterogeneous group of membrane-confined particles including endosome-derived exosomes and plasma membrane-originated microvesicles. The expanding field of extracellular vesicle research needs reproducible and accurate methods to characterize EVs [2]. EV profiling can be challenging due to the small size and heterogeneity. This protocol aims to provide a method to isolate EVs and facilitate high-precision particle quantitation by Nanoparticle Tracking Analysis (NTA)[3, 4]. NTA is commonly used to determine EV concentration and diameter [5, 6]. The protocol here described refers to the isolation of EVs from blood-plasma samples by using ultracentrifugation and then quantification and sizing of EVs with NTA by NanoSight NS300 system (Malvern Panalytical Ltd., Malvern, UK) provided with a syringe pump module enabling analysis in constant flow for improved sample statistics.

2017 ◽  
Vol 6 (1) ◽  
pp. 1308779 ◽  
Author(s):  
Morten Mørk ◽  
Aase Handberg ◽  
Shona Pedersen ◽  
Malene M. Jørgensen ◽  
Rikke Bæk ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anna Lebedeva ◽  
Wendy Fitzgerald ◽  
Ivan Molodtsov ◽  
Alexander Shpektor ◽  
Elena Vasilieva ◽  
...  

AbstractA proinflammatory dysregulation of cytokine release is associated with various diseases, in particular with those of infectious etiology, as well as with cardiovascular diseases (CVD). We showed earlier that cytokines are released in two forms, soluble and in association with extracellular vesicles (EVs). Here, we investigated the patterns of expression and clustering of soluble and EV-associated cytokines in patients with ST-elevation myocardial infarction (STEMI). We collected plasma samples from 48 volunteers without CVD and 62 patients with STEMI, separated soluble and EV fractions, and analyzed them for 33 cytokines using a multiplexed bead-based assay. We identified soluble and EV-associated cytokines that are upregulated in STEMI and form correlative clusters. Several clustered soluble cytokines were expressed almost exclusively in patients with STEMI. EV-associated cytokines were largely not affected by STEMI, except for pro-inflammatory cytokines IL-6, IL-18, and MIG, as well as anti-inflammatory IL-2 that were upregulated in a correlated fashion. Our results demonstrated that soluble cytokines in patients with STEMI are upregulated in a coordinated fashion in contrast to the mainly unaffected system of EV-associated cytokines. Identification of cytokine clusters affected differently by STEMI now permits investigation of their differential contributions to this pathology.


Open Biology ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 200116 ◽  
Author(s):  
Sandra Anne Banack ◽  
Rachael Anne Dunlop ◽  
Paul Alan Cox

Biomarkers for amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) are currently not clinically available for disease diagnosis or analysis of disease progression. If identified, biomarkers could improve patient outcomes by enabling early intervention and assist in the determination of treatment efficacy. We hypothesized that neural-enriched extracellular vesicles could provide microRNA (miRNA) fingerprints with unequivocal signatures of neurodegeneration. Using blood plasma from ALS/MND patients and controls, we extracted neural-enriched extracellular vesicle fractions and conducted next-generation sequencing and qPCR of miRNA components of the transcriptome. We here report eight miRNA sequences which significantly distinguish ALS/MND patients from controls in a replicated experiment using a second cohort of patients and controls. miRNA sequences from patient blood samples using neural-enriched extracellular vesicles may yield unique insights into mechanisms of neurodegeneration and assist in early diagnosis of ALS/MND.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiao Xu ◽  
Limei Xu ◽  
Peng Zhang ◽  
Kan Ouyang ◽  
Yin Xiao ◽  
...  

Numerous biological processes are regulated by the intercellular communications arising from extracellular vesicles (EVs) released from cells. However, the mechanisms that regulate the quantity of EV discharged have yet to be understood. While it is known that ATP9A, a P4-ATPase, is involved in endosomal recycling, it is not clear whether it also contributes to the release of EVs and the makeup of exosomal lipids. This study is aimed at exploring the role of human ATP9A in the process of EV release and, further, to analyze the profiles of EV lipids regulated by ATP9A. Our results demonstrate that ATP9A is located in both the intracellular compartments and the plasma membrane. The percentage of ceramides and sphingosine was found to be significantly greater in the control cells than in the ATP9A overexpression and ATP9A knockout groups. However, EV release was greater in ATP9A knockout cells, indicating that ATP9A inhibits the release of EVs. This study revealed the effects of ATP9A on the release of EVs and the lipid composition of exosomes.


2021 ◽  
Author(s):  
Abdel A. Alli

Extracellular vesicles (EVs) are carriers of various biomolecules including bioactive enzymes, lipids, proteins, nucleic acids, and metabolites. EVs are classified into three main types based on their size, biogenesis, and cargo. Exosomes originate from endosomal membranes and are the smallest type of EV. Microvesicles (MVs) or microparticles are larger in size, and like apoptotic bodies which represent the largest type of EVs, both of these vesicles originate from outward budding of the plasma membrane. As discussed in this chapter, cargo loading of EVs and their release into the extracellular space where they can be taken up by neighboring or distant cells plays an important role in physiology and pathophysiology. This chapter will outline specific mechanisms involved in the loading and enrichment of miRNAs, proteins, and lipids within EVs. As explained here, various external and biological stimuli play a role in EV release. Finally, recent studies have shown that the biogenesis, cargo loading, and release of EVs are governed by circadian rhythms. Although EVs were once thought to serve as garbage disposals of cells, the numerous roles they serve in physiology and pathophysiology are now being appreciated.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 750 ◽  
Author(s):  
Oshchepkova ◽  
Neumestova ◽  
Matveeva ◽  
Artemyeva ◽  
Morozova ◽  
...  

Extracellular vesicles provide cell-to-cell communication and have great potential for use as therapeutic carriers. This study was aimed at the development of an extracellular vesicle-based system for nucleic acid delivery. Three types of nanovesicles were assayed as oligonucleotide carriers: mesenchymal stem cell-derived extracellular vesicles and mimics prepared either by cell treatment with cytochalasin B or by vesicle generation from plasma membrane. Nanovesicles were loaded with a DNA oligonucleotide by freezing/thawing, sonication, or permeabilization with saponin. Oligonucleotide delivery was assayed using HEK293 cells. Extracellular vesicles and mimics were characterized by a similar oligonucleotide loading level but different efficiency of oligonucleotide delivery. Cytochalasin-B-inducible nanovesicles exhibited the highest level of oligonucleotide accumulation in HEK293 cells and a loading capacity of 0.44 ± 0.05 pmol/µg. The loaded oligonucleotide was mostly protected from nuclease action.


2021 ◽  
Vol 11 (Suppl_1) ◽  
pp. S31-S31
Author(s):  
Luiza Garaeva ◽  
Roman Kamyshinsky ◽  
Darya Kulabukhova ◽  
Sergey Landa ◽  
Elena Varfolomeeva ◽  
...  

Background: Extracellular vesicles (EVs) are small membrane vesicles released from different types of cells. EVs are found in many human biological fluids. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies with the plasma membrane. This type of vesicles is characterized by specific exosomal markers. Exosomes extracted from peripheral body liquids could have specific properties associated with different physiological conditions as well as human disorders, including neurodegenerative diseases. Gaucher disease (GD) – is the most common form of lysosomal storage disorders caused by mutations in the glucocerebrosidase (GBA) gene. Lysosome functionality is critical for the regulation of extracellular vesicle secretion and content. In model animals, the inhibition of glucocerebrosidase has been shown to increase the secretion of extracellular vesicles in brain tissues. Amount evaluation of EVs and their size in the biological fluids of patients with GD has not been early performed; therefore, it is unknown whether lysosomal dysfunction found in GD patients influences the plasma pool of EVs. The aim of this study was to evaluate the amount of blood plasma EVs in patients with GD and their characterization for morphology and size. Methods: EVs were isolated from the blood plasma of 8 GD patients and 8 controls by ultracentrifugation, and were characterized using cryo-electron microscopy (cryo-EM), nanoparticle tracking analysis (NTA), and dynamic light scattering (DLS). Also, the presence of exosomal markers CD9, CD63, CD81, and HSP70 was analyzed by flow cytometry and western blot. Results: Here, it was first shown an increased proportion of exosome fraction in EVs from plasma of GD patients compared to controls by DLS and cryo-EM (p<0.001) that was confirmed by mode size detected by NTA (p<0.02). Moreover, an increased number of double and multilayer vesicles in plasma EVs from GD patients was demonstrated by cryo-EM. We also detected an increase in the expression of exosomal markers on the surface of vesicles from the blood plasma of patients with GD compared to controls. Conclusion: Here, we firstly report that the exosomes obtained from the blood plasma of GD patients have a larger size and altered morphology. Thus, we have shown that lysosomal dysfunction in GD patients leads to a striking alteration of blood plasma extracellular vesicle pool.


2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


Sign in / Sign up

Export Citation Format

Share Document