scholarly journals Effects of ATP9A on Extracellular Vesicle Release and Exosomal Lipid Composition

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiao Xu ◽  
Limei Xu ◽  
Peng Zhang ◽  
Kan Ouyang ◽  
Yin Xiao ◽  
...  

Numerous biological processes are regulated by the intercellular communications arising from extracellular vesicles (EVs) released from cells. However, the mechanisms that regulate the quantity of EV discharged have yet to be understood. While it is known that ATP9A, a P4-ATPase, is involved in endosomal recycling, it is not clear whether it also contributes to the release of EVs and the makeup of exosomal lipids. This study is aimed at exploring the role of human ATP9A in the process of EV release and, further, to analyze the profiles of EV lipids regulated by ATP9A. Our results demonstrate that ATP9A is located in both the intracellular compartments and the plasma membrane. The percentage of ceramides and sphingosine was found to be significantly greater in the control cells than in the ATP9A overexpression and ATP9A knockout groups. However, EV release was greater in ATP9A knockout cells, indicating that ATP9A inhibits the release of EVs. This study revealed the effects of ATP9A on the release of EVs and the lipid composition of exosomes.

Author(s):  
Sherin Saheera ◽  
Vivek P Jani ◽  
Kenneth W Witwer ◽  
Shelby Kutty

Extracellular vesicles (EVs) are nanosized lipid bilayer-delimited particles released from cells that mediate intercellular communications and play a pivotal role in various physiological and pathological processes. Subtypes of EVs may include plasma-membrane ectosomes or microvesicles and endosomal-origin exosomes, although functional distinctions remain unclear. EVs carry cargo proteins, nucleic acids (RNA and DNA), lipids, and metabolites. By presenting or transferring this cargo to recipient cells, EVs can trigger cellular responses. Here, we summarize what is known about EV biogenesis, composition, and function, with an emphasis on the role of EVs in cardiovascular system. Additionally, we provide an update on the function of EVs in cardiovascular pathophysiology, further highlighting their potential for diagnostic and therapeutic applications.


2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 902
Author(s):  
Eva Costanzi ◽  
Carolina Simioni ◽  
Gabriele Varano ◽  
Cinzia Brenna ◽  
Ilaria Conti ◽  
...  

Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell–cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs’ potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.


2021 ◽  
pp. 030098582199932
Author(s):  
Laura Bongiovanni ◽  
Anneloes Andriessen ◽  
Marca H. M. Wauben ◽  
Esther N. M. Nolte-’t Hoen ◽  
Alain de Bruin

With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Shibo Cheng ◽  
Yutao Li ◽  
He Yan ◽  
Yunjie Wen ◽  
Xin Zhou ◽  
...  

Extracellular vesicles (EVs) secreted by cells into the bloodstream and other bodily fluids, including exosomes, have been demonstrated to be a class of significant messengers that mediate intercellular communications. Tumor-derived...


2019 ◽  
Vol 20 (1) ◽  
pp. 331-357 ◽  
Author(s):  
Michael W. Graner

High-grade gliomas, particularly glioblastomas (grade IV), are devastating diseases with dismal prognoses; afflicted patients seldom live longer than 15 months, and their quality of life suffers immensely. Our current standard-of-care therapy has remained essentially unchanged for almost 15 years, with little new therapeutic progress. We desperately need a better biologic understanding of these complicated tumors in a complicated organ. One area of rejuvenated study relates to extracellular vesicles (EVs)—membrane-enclosed nano- or microsized particles that originate from the endosomal system or are shed from the plasma membrane. EVs contribute to tumor heterogeneity (including the maintenance of glioma stem cells or their differentiation), the impacts of hypoxia (angiogenesis and coagulopathies), interactions amid the tumor microenvironment (concerning the survival of astrocytes, neurons, endothelial cells, blood vessels, the blood–brain barrier, and the ensuing inflammation), and influences on the immune system (both stimulatory and suppressive). This article reviews glioma EVs and the ways that EVs manifest themselves as autocrine, paracrine, and endocrine factors in proximal and distal intra- and intercellular communications. The reader should note that there is much controversy, and indeed confusion, in the field over the exact roles for EVs in many biological processes, and we will engage some of these difficulties herein.


Author(s):  
Florian Puhm ◽  
Eric Boilard ◽  
Kellie R. Machlus

Extracellular vesicles (EVs) are a means of cell-to-cell communication and can facilitate the exchange of a broad array of molecules between adjacent or distant cells. Platelets are anucleate cells derived from megakaryocytes and are primarily known for their role in maintaining hemostasis and vascular integrity. Upon activation by a variety of agonists, platelets readily generate EVs, which were initially identified as procoagulant particles. However, as both platelets and their EVs are abundant in blood, the role of platelet EVs in hemostasis may be redundant. Moreover, findings have challenged the significance of platelet-derived EVs in coagulation. Looking beyond hemostasis, platelet EV cargo is incredibly diverse and can include lipids, proteins, nucleic acids, and organelles involved in numerous other biological processes. Furthermore, while platelets cannot cross tissue barriers, their EVs can enter lymph, bone marrow, and synovial fluid. This allows for the transfer of platelet-derived content to cellular recipients and organs inaccessible to platelets. This review highlights the importance of platelet-derived EVs in physiological and pathological conditions beyond hemostasis.


2011 ◽  
Vol 11 ◽  
pp. 1120-1130 ◽  
Author(s):  
Vladislav M. Chernov ◽  
Olga A. Chernova ◽  
Alexey A. Mouzykantov ◽  
Irina R. Efimova ◽  
Gulnara F. Shaymardanova ◽  
...  

Extracellular vesicle production is believed to be a ubiquitous process in bacteria, but the data on such a process in Mollicutes are absent. We report the isolation of ultramicroforms – extracellular vesicles from supernatants ofAcholeplasma laidlawiiPG8 (ubiquitous mycoplasma; the main contaminant of cell culture). Considering sizes, morphology, and ultrastructural organization, the ultramicroforms ofA. laidlawiiPG8 are similar to membrane vesicles of Gram-positive and Gram-negative bacteria. We demonstrate thatA. laidlawiiPG8 vesicles contain genetic material and proteins, and are mutagenic to lymphocytes of human peripheral blood. We show thatMycoplasma gallisepticumS6, the other mycoplasma, also produce similar structures, which suggests that shedding of the vesicles might be the common phenomenon in Mollicutes. We found that the action of stress conditions results in the intensive formation of ultramicroforms in mycoplasmas. The role of vesicular formation in mycoplasmas remains to be studied.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3696
Author(s):  
Kevin Ho Wai Yim ◽  
Ala’a Al Hrout ◽  
Simone Borgoni ◽  
Richard Chahwan

Extracellular vesicles (EVs) are emerging as potent and intricate intercellular communication networks. From their first discovery almost forty years ago, several studies have bolstered our understanding of these nano-vesicular structures. EV subpopulations are now characterized by differences in size, surface markers, cargo, and biological effects. Studies have highlighted the importance of EVs in biology and intercellular communication, particularly during immune and tumor interactions. These responses can be equally mediated at the proteomic and epigenomic levels through surface markers or nucleic acid cargo signaling, respectively. Following the exponential growth of EV studies in recent years, we herein synthesize new aspects of the emerging immune–tumor EV-based intercellular communications. We also discuss the potential role of EVs in fundamental immunological processes under physiological conditions, viral infections, and tumorigenic conditions. Finally, we provide insights on the future prospects of immune–tumor EVs and suggest potential avenues for the use of EVs in diagnostics and therapeutics.


2020 ◽  
Vol 18 (2) ◽  
pp. 91-114
Author(s):  
Vladimir I. Vashchenko ◽  
Petr D. Shabanov

Extracellular vesicles (EVs) represent heterogeneous population of the microparticles liberated by almost all live cages which are widely investigated recently in various biological and medical areas. They usually consist of two basic types (exosomes and microvesicles) and recently draw the increasing attention in quality mesenges of the cellular alarm system. Really, these vesicles can influence on cages-recipients, transferring and delivering difficult complexes of biomolecules (the lipids, proteins, coagulation factors, antigene, nucleinic acids), protected from enzymatic to degradation in environment. Importance EVs has been shown in pathophysiology several bodies, in particular, in kidneys where various types of cages нефрона allocate EVs which mediate their communication with underlaying cages urinogenous ways. By numerous researches it is established that EVs are involved in cellular communications during the regenerative and pathological processes occurring in a kidney. During the last years also it has been proved that vesicles play an important role in normal physiology of kidneys. Though many mechanisms EVs at illnesses are still studied insufficiently, in particular, in kidneys, opening of a role of additional mechanisms can help to throw light on the biological processes proceeding in kidneys. Eventually, extracellular vesicles, allocated with nephritic cages, collect in urine, becoming, thus, the big resource as markers of illnesses urinogenous a path and the perspective noninvasive diagnostic tool at nephritic illnesses. In the present review we discuss the latest data about a role EVs in pathophysiology of kidneys and their potential prospects in diagnostics and therapy of nephritic illness.


Sign in / Sign up

Export Citation Format

Share Document